Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterisation of Gold-Doped Polymeric Nanoparticles for Testing
2.2.1. Assessment of “Free” Ultrasmall AuNPs by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.2.2. Stability Test in the Exposure Medium
2.3. Exposure of Freshwater Model Organisms
2.4. Determination of Gold Level on Different Biomatrices by ICP-MS
2.5. Electron Microscopy
3. Results
3.1. Characterisation of Gold-Doped Polymeric Nanoparticles
3.2. Detection of Gold Level as Proxy of Nanoplastics
3.3. Examining Gold–Polymer Particle Interactions with Biomatrix via Electron Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughn, C.C. Ecosystem Services Provided by Freshwater Mussels. Hydrobiologia 2018, 810, 15–27. [Google Scholar] [CrossRef]
- Hellawell, J.M. Biological Indicators of Freshwater Pollution and Environmental Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9400943156. [Google Scholar]
- Prokić, M.D.; Gavrilović, B.R.; Radovanović, T.B.; Gavrić, J.P.; Petrović, T.G.; Despotović, S.G.; Faggio, C. Studying Microplastics: Lessons from Evaluated Literature on Animal Model Organisms and Experimental Approaches. J. Hazard. Mater. 2021, 414, 125476. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, A.; Saber, M.; Gadow, S.; Awad, F. Biological Indicators for Pollution Detection in Terrestrial and Aquatic Ecosystems. Bull. Natl. Res. Cent. 2020, 44, 127. [Google Scholar] [CrossRef]
- Yang, W.; Huang, X.; Wu, Q.; Shi, J.; Zhang, X.; Ouyang, L.; Crump, D.; Zhang, X.; Zhang, R. Acute Toxicity of Polychlorinated Diphenyl Ethers (PCDEs) in Three Model Aquatic Organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio) of Different Trophic Levels. Sci. Total Environ. 2022, 805, 150366. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of Nanoplastics in the Aquatic Environment and Possible Impacts on Aquatic Organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef]
- Zhang, B.; Chao, J.; Chen, L.; Liu, L.; Yang, X.; Wang, Q. Research Progress of Nanoplastics in Freshwater. Sci. Total Environ. 2021, 757, 143791. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Liu, W.; Liao, H.; Wei, M.; Junaid, M.; Chen, G.; Wang, J. Biological Uptake, Distribution and Toxicity of Micro(Nano)Plastics in the Aquatic Biota: A Special Emphasis on Size-Dependent Impacts. TrAC Trends Anal. Chem. 2024, 170, 117477. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, S.; Liu, B.; Zhang, J.; Chen, J.; Zhang, D.; Pan, X. Pretreatment, Identification and Quantification of Submicro/Nano-Plastics in Complex Environmental Matrices. TrAC Trends Anal. Chem. 2023, 167, 117259. [Google Scholar] [CrossRef]
- Kokilathasan, N.; Dittrich, M. Nanoplastics: Detection and Impacts in Aquatic Environments—A Review. Sci. Total Environ. 2022, 849, 157852. [Google Scholar] [CrossRef]
- Lee, W.S.; Kim, H.; Sim, Y.; Kang, T.; Jeong, J. Fluorescent Polypropylene Nanoplastics for Studying Uptake, Biodistribution, and Excretion in Zebrafish Embryos. ACS Omega 2022, 7, 2467–2473. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zhao, H.; Ding, J.; Jing, C.; Zhang, W.; Chen, X. Uptake and Toxicity of Micro-/Nanoplastics Derived from Naturally Weathered Disposable Face Masks in Developing Zebrafish: Impact of COVID-19 Pandemic on Aquatic Life. Environ. Pollut. 2024, 343, 123129. [Google Scholar] [CrossRef] [PubMed]
- Catarino, A.I.; Frutos, A.; Henry, T.B. Use of Fluorescent-Labelled Nanoplastics (NPs) to Demonstrate NP Absorption Is Inconclusive without Adequate Controls. Sci. Total Environ. 2019, 670, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Stábile, F.; Ekvall, M.T.; Gallego-Urrea, J.A.; Nwachukwu, T.; Soorasena, W.G.C.U.; Rivas-Comerlati, P.I.; Hansson, L.-A. Fate and Biological Uptake of Polystyrene Nanoparticles in Freshwater Wetland Ecosystems. Environ. Sci. Nano 2024, 11, 3475–3486. [Google Scholar] [CrossRef]
- Clark, N.J.; Khan, F.R.; Crowther, C.; Mitrano, D.M.; Thompson, R.C. Uptake, Distribution and Elimination of Palladium-Doped Polystyrene Nanoplastics in Rainbow Trout (Oncorhynchus mykiss) Following Dietary Exposure. Sci. Total Environ. 2023, 854, 158765. [Google Scholar] [CrossRef]
- Clark, N.J.; Khan, F.R.; Mitrano, D.M.; Boyle, D.; Thompson, R.C. Demonstrating the Translocation of Nanoplastics across the Fish Intestine Using Palladium-Doped Polystyrene in a Salmon Gut-Sac. Environ. Int. 2022, 159, 106994. [Google Scholar] [CrossRef]
- Bair, E.C.; Guo, Z.; Richardson, T.L.; Lead, J.R. Quantification of Palladium-Labelled Nanoplastics Algal Uptake by Single Cell and Single Particle Inductively Coupled Plasma Mass Spectrometry. Environ. Chem. 2024, 21, EN24011. [Google Scholar] [CrossRef]
- Zieritz, A.; Sousa, R.; Aldridge, D.C.; Douda, K.; Esteves, E.; Ferreira-Rodríguez, N.; Mageroy, J.H.; Nizzoli, D.; Osterling, M.; Reis, J.; et al. A Global Synthesis of Ecosystem Services Provided and Disrupted by Freshwater Bivalve Molluscs. Biol. Rev. 2022, 97, 1967–1998. [Google Scholar] [CrossRef]
- Della Torre, C.; Riccardi, N.; Magni, S.; Modesto, V.; Fossati, M.; Binelli, A. First Comparative Assessment of Contamination by Plastics and Non-Synthetic Particles in Three Bivalve Species from an Italian Sub-Alpine Lake. Environ. Pollut. 2023, 330, 121752. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G.; Gallo, G. Bivalve Molluscs as a Unique Target Group for Nanoparticle Toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar] [CrossRef]
- Della Torre, C.; Maggioni, D.; Nigro, L.; Farè, F.; Hamza, H.; Protano, G.; Magni, S.; Fontana, M.; Riccardi, N.; Chiara, M.; et al. Alginate Coating Modifies the Biological Effects of Cerium Oxide Nanoparticles to the Freshwater Bivalve Dreissena polymorpha. Sci. Total Environ. 2021, 773, 145612. [Google Scholar] [CrossRef] [PubMed]
- Cassano, D.; Bogni, A.; La Spina, R.; Gilliland, D.; Ponti, J. Investigating the Cellular Uptake of Model Nanoplastics by Single-Cell ICP-MS. Nanomaterials 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Cassano, D.; La Spina, R.; Ponti, J.; Bianchi, I.; Gilliland, D. Inorganic Species-Doped Polypropylene Nanoparticles for Multifunctional Detection. ACS Appl. Nano Mater. 2021, 4, 1551–1557. [Google Scholar] [CrossRef]
- Geiss, O.; Bianchi, I.; Bucher, G.; Verleysen, E.; Brassinne, F.; Mast, J.; Loeschner, K.; Givelet, L.; Cubadda, F.; Ferraris, F.; et al. Determination of the Transport Efficiency in SpICP-MS Analysis Using Conventional Sample Introduction Systems: An Interlaboratory Comparison Study. Nanomaterials 2022, 12, 725. [Google Scholar] [CrossRef]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Gray, E.P.; Higgins, C.P.; Ranville, J.F. Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environ. Sci. Technol. 2012, 46, 12272–12280. [Google Scholar] [CrossRef]
- Desmet, C.; Valsesia, A.; Oddo, A.; Ceccone, G.; Spampinato, V.; Rossi, F.; Colpo, P. Characterisation of Nanomaterial Hydrophobicity Using Engineered Surfaces. J. Nanopart. Res. 2017, 19, 117. [Google Scholar] [CrossRef]
- Valsesia, A.; Desmet, C.; Ojea-Jiménez, I.; Oddo, A.; Capomaccio, R.; Rossi, F.; Colpo, P. Direct Quantification of Nanoparticle Surface Hydrophobicity. Commun. Chem. 2018, 1, 53. [Google Scholar] [CrossRef]
- He, M.-Q.; Chen, S.; Yao, K.; Wang, K.; Yu, Y.-L.; Wang, J.-H. Oriented Assembly of Gold Nanoparticles with Freezing-Driven Surface DNA Manipulation and Its Application in SERS-Based MicroRNA Assay. Small Methods 2019, 3, 1900017. [Google Scholar] [CrossRef]
- Pradel, A.; Catrouillet, C.; Gigault, J. The Environmental Fate of Nanoplastics: What We Know and What We Need to Know about Aggregation. NanoImpact 2023, 29, 100453. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Wang, X.; Bolan, N.; Tsang, D.C.W.; Sarkar, B.; Bradney, L.; Li, Y. A Review of Microplastics Aggregation in Aquatic Environment: Influence Factors, Analytical Methods, and Environmental Implications. J. Hazard. Mater. 2021, 402, 123496. [Google Scholar] [CrossRef] [PubMed]
- Sommer, U.; Sommer, F. Cladocerans versus Copepods: The Cause of Contrasting Top-down Controls on Freshwater and Marine Phytoplankton. Oecologia 2006, 147, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Rodríguez-Torres, R.; Rist, S.; Nielsen, T.G.; Hartmann, N.B.; Brun, P.; Li, D.; Almeda, R. Unpalatable Plastic: Efficient Taste Discrimination of Microplastics in Planktonic Copepods. Environ. Sci. Technol. 2022, 56, 6455–6465. [Google Scholar] [CrossRef] [PubMed]
- Merzel, R.L.; Purser, L.; Soucy, T.L.; Olszewski, M.; Colón-Bernal, I.; Duhaime, M.; Elgin, A.K.; Banaszak Holl, M.M. Uptake and Retention of Nanoplastics in Quagga Mussels. Glob. Chall. 2020, 4, 1800104. [Google Scholar] [CrossRef]
Particle Type | Particle Size 1 (nm) | Particle Mass 2 (ag) | Average Number of Particles per 1 ng of Au Detected 3 |
---|---|---|---|
Au-PE | 193 ± 2 | 3640 | 5.4 × 106 |
Au-PP | 179 ± 2 | 2874 | 8.5 × 106 |
Au-PVC | 180 ± 4 | 4382 | 8.8 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirinzi, G.F.; Bucher, G.; Passos, M.S.P.d.; Modesto, V.; Serra, M.-Á.; Gilliland, D.; Riccardi, N.; Ponti, J. Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles. Nanomaterials 2025, 15, 116. https://doi.org/10.3390/nano15020116
Schirinzi GF, Bucher G, Passos MSPd, Modesto V, Serra M-Á, Gilliland D, Riccardi N, Ponti J. Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles. Nanomaterials. 2025; 15(2):116. https://doi.org/10.3390/nano15020116
Chicago/Turabian StyleSchirinzi, Gabriella F., Guillaume Bucher, Marisa Sárria Pereira de Passos, Vanessa Modesto, Miguel-Ángel Serra, Douglas Gilliland, Nicoletta Riccardi, and Jessica Ponti. 2025. "Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles" Nanomaterials 15, no. 2: 116. https://doi.org/10.3390/nano15020116
APA StyleSchirinzi, G. F., Bucher, G., Passos, M. S. P. d., Modesto, V., Serra, M.-Á., Gilliland, D., Riccardi, N., & Ponti, J. (2025). Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles. Nanomaterials, 15(2), 116. https://doi.org/10.3390/nano15020116