Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review
Abstract
:1. Introduction
2. Design of Microwave-Absorbing Materials
2.1. Absorbing Theory
2.2. EMW-Absorbing Design of Ceramic Materials at High Temperature
3. Composite Materials of Ceramic Matrix with Different Agents
3.1. Composites of Ceramics and Carbon-Based Materials
3.2. Composites of Ceramics and Metal Oxides
3.3. Ceramic Composites
4. Ceramic-Based Wave-Absorbing Metamaterials
4.1. Traditional Ceramic-Based Wave-Absorbing Metamaterials
4.2. 3D-Printed Ceramic Wave-Absorbing Metamaterials
4.3. High-Temperature Wave-Absorbing Ceramic Metamaterials Based on 3D Printing
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Liang, C.; Wang, Z. Research progress of high temperature microwave absorption materials. J. Aeronaut. Mater. 2018, 38, 1–9. [Google Scholar] [CrossRef]
- Delfini, A.; Albano, M.; Vricella, A.; Santoni, F.; Rubini, G.; Pastore, R.; Marchetti, M. Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment. Materials 2018, 11, 1730. [Google Scholar] [CrossRef]
- Yan, L.; Wang, X.; Li, W.; Yin, S.; Jia, D.; Zou, R.; Wang, Y.; Huang, W.; Yin, Z.; Li, Y. High-temperature resistance and broadband radar absorbers based on SiC nanowires coatings with titanium diboride metasurfaces. Appl. Surf. Sci. 2024, 653, 159383. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, Y.; Chen, C.; Zhang, J.; He, Y.; Yin, C.; Wu, N.; Tang, J.; Xing, S. Application, development, and challenges of stealth materials/structures in next-generation aviation equipment. Appl. Surf. Sci. Adv. 2024, 19, 100575. [Google Scholar] [CrossRef]
- Jia, Y.; Ajayi, T.D.; Wahls, B.H.; Ramakrishnan, K.R.; Ekkad, S.; Xu, C. Multifunctional ceramic composite system for simultaneous thermal protection and electromagnetic interference shielding for carbon fiber-reinforced polymer composites. ACS Appl. Mater. Interfaces 2020, 12, 58005–58017. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhu, M.; Zhu, Y. Organosilicon polymer-derived ceramics: An overview. J. Adv. Ceram. 2019, 8, 457–478. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, L.; Zhang, L. Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem. Eng. J. 2018, 338, 248–260. [Google Scholar] [CrossRef]
- Shi, Z.C.; Fan, R.H.; Yan, K.L.; Sun, K.; Zhang, M.; Wang, C.G.; Liu, X.F.; Zhang, X.H. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 2013, 23, 4123–4132. [Google Scholar] [CrossRef]
- Golla, B.R.; Mukhopadhyay, A.; Basu, B.; Thimmappa, S.K. Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 2020, 111, 100651. [Google Scholar] [CrossRef]
- Luo, C.; Tang, Y.; Jiao, T.; Kong, J. High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl. Mater. Interfaces 2018, 10, 28051–28061. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef]
- Jia, Y.; Ajayi, T.D.; Roberts, M.A., Jr.; Chung, C.-C.; Xu, C. Ultrahigh-temperature ceramic–polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 46254–46266. [Google Scholar] [CrossRef] [PubMed]
- Kovalčíková, A.; Sedláček, J.; Lenčéš, Z.; Bystrický, R.; Dusza, J.; Šajgalík, P. Oxidation resistance of SiC ceramics prepared by different proceessing routes. J. Eur. Ceram. Soc. 2016, 36, 3783–3793. [Google Scholar] [CrossRef]
- Jia, D.; Liang, B.; Yang, Z.; Zhou, Y. Metastable Si-BCN ceramics and their matrix composites developed by inorganic route based on mechanical alloying: Fabrication, microstructures, properties and their relevant basic scientific issues. Prog. Mater. Sci. 2018, 98, 1–67. [Google Scholar] [CrossRef]
- Cheng, H.; Pan, Y.; Wang, X.; Liu, C.; Shen, C.; Schubert, D.W.; Guo, Z.; Liu, X. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. Adv. Mater. 2015, 28, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, M.; Yu, X.; You, W.; Zhang, J.; Liu, X.; Wang, M.; Che, R. MOF-derived Ni1− xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 2020, 12, 150. [Google Scholar] [CrossRef]
- Li, D.; Jia, D.; Yang, Z.; Zhou, Y. Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures. Int. Mater. Rev. 2022, 67, 266–297. [Google Scholar] [CrossRef]
- Huang, P.; Zhou, B.; Zheng, Q.; Tian, Y.; Wang, M.; Wang, L.; Li, J.; Jiang, W. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv. Mater. 2020, 32, 1905951. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Jiao, T.; Gu, J.; Tang, Y.; Kong, J. Graphene shield by SiBCN ceramic: A promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl. Mater. Interfaces 2018, 10, 39307–39318. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Tian, X.Y.; Wu, L.L.; Li, C.D. All-dielectric three-dimensional broadband Eaton lens with large refractive index range. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Lei, L.; Yao, Z.; Zhou, J.; Wei, B.; Fan, H. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 2020, 200, 108479. [Google Scholar] [CrossRef]
- Wang, H.L.; Ma, H.F.; Chen, M.; Sun, S.; Cui, T.J. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves. Adv. Funct. Mater. 2021, 31, 2100275. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, D.; Deng, B.; Xu, X.; Nian, Q.; Jin, S.; Leedy, K.D.; Li, H.; Cheng, G.J. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 2017, 29, 1605506. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.R.; Cakmakyapan, S.; Jarrahi, M. Reconfigurable metamaterials for terahertz wave manipulation. Rep. Prog. Phys. 2017, 80, 094501. [Google Scholar] [CrossRef] [PubMed]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar] [CrossRef]
- Messing, G.L.; Stevenson, A.J. Toward pore-free ceramics. Science 2008, 322, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Saroia, J.; Wang, Y.; Wei, Q.; Lei, M.; Li, X.; Guo, Y.; Zhang, K. A review on 3D printed matrix polymer composites: Its potential and future challenges. Int. J. Adv. Manuf. Technol. 2020, 106, 1695–1721. [Google Scholar] [CrossRef]
- Tian, X.; Yin, M.; Li, D. 3D printing: A useful tool for the fabrication of artificial electromagnetic (EM) medium. Rapid Prototyp. J. 2016, 22, 251–257. [Google Scholar] [CrossRef]
- Han, M.; Yin, X.; Duan, W.; Ren, S.; Zhang, L.; Cheng, L. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 2016, 36, 2695–2703. [Google Scholar] [CrossRef]
- Lu, M.-M.; Cao, M.-S.; Chen, Y.-H.; Cao, W.-Q.; Liu, J.; Shi, H.-L.; Zhang, D.-Q.; Wang, W.-Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Wang, Z. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces. Carbon 2020, 170, 517–526. [Google Scholar] [CrossRef]
- Yu, M.; Liang, C.; Liu, M.; Liu, X.; Yuan, K.; Cao, H.; Che, R. Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275–7283. [Google Scholar] [CrossRef]
- Kong, L.; Yin, X.; Li, Q.; Ye, F.; Liu, Y.; Duo, G.; Yuan, X. High-Temperature Electromagnetic Wave Absorption Properties of ZnO/ZrSiO4 Composite Ceramics. J. Am. Ceram. Soc. 2013, 96, 2211–2217. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, R.; Liu, Z.; Dai, X.; Kong, J. Phase-transformation nanoparticles synchronously boosting mechanical and electromagnetic performance of SiBCN ceramics. ACS Appl. Mater. Interfaces 2023, 15, 4234–4245. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Su, L.; Wang, H.; Niu, M.; Tao, L.; Lu, D.; Xu, L.; Li, M.; Gao, H. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 2021, 13, 16704–16712. [Google Scholar] [CrossRef]
- Luo, C.; Jiao, T.; Tang, Y.; Kong, J. Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 2018, 20, 1701168. [Google Scholar] [CrossRef]
- Chunjia, L.; Peng, M.; Yusheng, T.; Jie, K. Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature. Chin. J. Aeronaut. 2021, 34, 277–291. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, L.; Wang, W.; Zhang, X.; Zhang, K.; Chen, M.; Huang, Y.; He, R.; Fang, D. Stereolithographically 3D printed SiC metastructure for ultrabroadband and high temperature microwave absorption. Adv. Mater. Technol. 2023, 8, 2201222. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Liu, Z.; Pang, Y.; Chen, J.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122. [Google Scholar] [CrossRef]
- Yao, L.; Zhou, S.; Pan, L.; Mei, H.; Li, Y.; Dassios, K.G.; Colombo, P.; Cheng, L.; Zhang, L. Multifunctional metamaterial microwave blackbody with high-frequency compatibility, temperature insensitivity, and structural scalability. Adv. Funct. Mater. 2023, 33, 2209340. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Liu, X.; Cheng, L.; Zhang, L. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption. Mater. Des. 2017, 123, 46–53. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Du, Y.; Bai, J.; Fan, H.; Zhang, H.; Peng, Y.; Li, F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, X.; Huang, X.; Jia, D.; Li, J.; Shao, G.; Shao, C.; Wang, H.; Yin, X.; Yang, Z. Research progress and prospection on high-temperature wave-absorbing ceramic materials. Adv. Ceram. 2020, 41, 1–98. [Google Scholar] [CrossRef]
- Xiao, J.; Zhan, B.; He, M.; Qi, X.; Zhang, Y.; Guo, H.; Qu, Y.; Zhong, W.; Gu, J. Mechanically Robust and Thermal Insulating Nanofiber Elastomer for Hydrophobic, Corrosion-Resistant, and Flexible Multifunctional Electromagnetic Wave Absorbers. Adv. Funct. Mater. 2024, 2419266. [Google Scholar] [CrossRef]
- Xiao, J.; He, M.; Zhan, B.; Guo, H.; Yang, J.; Zhang, Y.; Qi, X.; Gu, J. Multifunctional microwave absorption materials: Construction strategies and functional applications. Mater. Horiz. 2024, 11, 5874–5894. [Google Scholar] [CrossRef]
- Xiao, J.; Zhan, B.; Qi, X.; Ding, J.; Qu, Y.; Gong, X.; Yang, J.L.; Wang, L.; Zhong, W.; Che, R. Metal Valence State Modulation Strategy to Design Core@ shell Hollow Carbon Microspheres@ MoSe2/MoOx Multicomponent Composites for Anti-Corrosion and Microwave Absorption. Small 2024, 2311312. [Google Scholar] [CrossRef]
- Li, W.; Yu, Z.; Wen, Q.; Feng, Y.; Fan, B.; Zhang, R.; Riedel, R. Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance. Int. Mater. Rev. 2023, 68, 487–520. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, Z.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z.; Tang, C.; Tan, P.; Deng, C.; Matitsine, S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203–259. [Google Scholar] [CrossRef]
- Qin, F.; Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 2012, 111, 061301. [Google Scholar] [CrossRef]
- Wang, J.; Lin, M.; Xu, Z.; Zhang, Y.; Shi, Z.; Qian, J.; Qiao, G.; Jin, Z. Advanced ceramic materials for high temperature applications. J. Eur. Ceram. Soc 2009, 29, 3091–3097. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, K. Polymer-derived high-temperature nonoxide materials: A review. Adv. Eng. Mater. 2023, 25, 2200967. [Google Scholar] [CrossRef]
- Xue, C.; Qin, Y.; Fu, H.; Fan, J. Thermal stability, mechanical properties and ceramization mechanism of epoxy resin/kaolin/quartz fiber ceramifiable composites. Polymers 2022, 14, 3372. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Kong, L.; Zhang, L.; Cheng, L.; Travitzky, N.; Greil, P. Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 2014, 59, 326–355. [Google Scholar] [CrossRef]
- Liu, J.; Cao, W.-Q.; Jin, H.-B.; Yuan, J.; Zhang, D.-Q.; Cao, M.-S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670–4677. [Google Scholar] [CrossRef]
- Rayssi, C.; Kossi, S.E.; Dhahri, J.; Khirouni, K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0≤ x≤ 0.1). RSC Adv. 2018, 8, 17139–17150. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Fouad, S.S.; Mehta, N. Dielectric relaxation and thermally activated ac conduction in (PVDF)/(rGO) nano-composites: Role of rGO over different fillers. J. Mater. Sci. Mater. Electron. 2018, 29, 18271–18281. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, A.; Kaur, P.; Singh, L. High-temperature dielectric relaxation and electric conduction mechanisms in a LaCoO3-modified Na0.5Bi0.5TiO3 system. ACS Omega 2023, 8, 25623–25638. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, W.; Qing, Y.; Luo, F.; Zhu, D. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites. J. Magn. Magn. Mater. 2015, 374, 345–349. [Google Scholar] [CrossRef]
- Butter, K.; Bomans, P.; Frederik, P.; Vroege, G.; Philipse, A. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2003, 2, 88–91. [Google Scholar] [CrossRef]
- Hou, Z.; Yin, X.; Xu, H.; Wei, H.; Li, M.; Cheng, L.; Zhang, L. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 2019, 11, 5364–5372. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Cao, M.-S.; Hou, Z.-L.; Song, W.-L.; Zhang, L.; Lu, M.-M.; Jin, H.-B.; Fang, X.-Y.; Wang, W.-Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Xiao, S.; Mei, H.; Han, D.; Cheng, L. Sandwich-like SiCnw/C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature. Compos. Part B Eng. 2020, 183, 107629. [Google Scholar] [CrossRef]
- Wan, F.; Yan, J.; Xu, H. Improved mechanical and high-temperature electromagnetic wave absorption properties of SiCf/BN/AlPO4 composites with absorber multiwalled carbon nanotubes. Compos. Interfaces 2021, 28, 809–826. [Google Scholar] [CrossRef]
- Pang, L.; Wang, J.; Luo, H.; Fan, X.; Li, Y.; Zhou, W.; Xiao, P. Multiple dielectric behavior of Cf-SiCNFs/Si3N4 ceramic composite at high temperatures. Ceram. Int. 2021, 47, 4127–4134. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Ye, F.; Wang, J.; Cheng, L. Microstructure and electromagnetic wave absorption property of reduced graphene oxide-SiCnw/SiBCN composite ceramics. Ceram. Int. 2020, 46, 7719–7732. [Google Scholar] [CrossRef]
- Sun, D.; Zou, Q.; Wang, Y.; Wang, Y.; Jiang, W.; Li, F. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 2014, 6, 6557–6562. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Li, Y.; Yi, D.; Zhai, W.; Wei, X.; Zheng, W. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160. [Google Scholar] [CrossRef]
- Huang, X.; Yan, X.; Xia, L.; Wang, P.; Wang, Q.; Zhang, X.; Zhong, B.; Zhao, H.; Wen, G. A three-dimensional graphene/Fe3O4/carbon microtube of sandwich-type architecture with improved wave absorbing performance. Scr. Mater. 2016, 120, 107–111. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Zhao, X.; Wang, Z.; Wang, L.; Jiang, W.; Li, J. Preparation and properties of reduced graphene oxide/fused silica composites. Carbon 2014, 77, 66–75. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 9, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Z.; Ishikawa, R.; Chen, L.; Liu, X.; Yin, X.; Ikuhara, Y.; Riedel, R. Single-source-precursor derived RGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectiveness. Acta Mater. 2017, 130, 83–93. [Google Scholar] [CrossRef]
- Feng, J.; Pu, F.; Li, Z.; Li, X.; Hu, X.; Bai, J. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225. [Google Scholar] [CrossRef]
- Pan, H.; Yin, X.; Xue, J.; Cheng, L.; Zhang, L. In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 2016, 107, 36–45. [Google Scholar] [CrossRef]
- Jia, X.; Wang, J.; Zhu, X.; Wang, T.; Yang, F.; Dong, W.; Wang, G.; Yang, H.; Wei, F. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd. 2017, 697, 138–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Chen, H.; Huang, Z.; Yang, Y.; Xiao, P.; Zhou, Y.; Chen, Y. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447. [Google Scholar] [CrossRef]
- Micheli, D.; Vricella, A.; Pastore, R.; Marchetti, M. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 2014, 77, 756–774. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Luo, H.; Xiao, P.; Huang, L.; Hong, W. Dielectric properties of Cf–Si3N4 sandwich composites prepared by gelcasting. Ceram. Int. 2014, 40, 8253–8259. [Google Scholar] [CrossRef]
- Luo, H.; Tan, Y.; Li, Y.; Xiao, P.; Deng, L.; Zeng, S.; Zhang, G.; Zhang, H.; Zhou, X.; Peng, S. Modeling for high-temperature dielectric behavior of multilayer Cf/Si3N4 composites in X-band. J. Eur. Ceram. Soc. 2017, 37, 1961–1968. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, Y.; Cai, D.; Xu, J.; Ding, J. High-Temperature Dielectric and Microwave Absorption Property of Atmospheric Plasma Sprayed Al2O3-MoSi2-Cu Composite Coating. Coatings 2021, 11, 1029. [Google Scholar] [CrossRef]
- Yang, H.-J.; Cao, W.-Q.; Zhang, D.-Q.; Su, T.-J.; Shi, H.-L.; Wang, W.-Z.; Yuan, J.; Cao, M.-S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-M.; Cao, W.-Q.; Shi, H.-L.; Fang, X.-Y.; Yang, J.; Hou, Z.-L.; Jin, H.-B.; Wang, W.-Z.; Yuan, J.; Cao, M.-S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540–10547. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, H.W.; Jin, C.; Yang, B.; Xu, C.; Pei, K.; Zhang, H.; Yang, Z.; Che, R. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, D.; Si, H.; Jiang, Z.; Li, M.; Gong, C. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255. [Google Scholar] [CrossRef]
- Li, M.; Yin, X.; Zheng, G.; Chen, M.; Tao, M.; Cheng, L.; Zhang, L. High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 2015, 50, 1478–1487. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Zhang, L. 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 109, 94–104. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, F.; Wei, P.; Zhou, W.; Zhu, D. Enhanced dielectric properties and high-temperature microwave absorption performance of Zn-doped Al2O3 ceramic. J. Electron. Mater. 2015, 44, 2353–2358. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, H.-J.; Hou, Z.-L.; Song, W.-L.; Xu, H.; Kang, Y.-Q.; Jin, H.-B.; Fang, X.-Y.; Cao, M.-S. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol. 2013, 237, 309–313. [Google Scholar] [CrossRef]
- Kuang, B.; Dou, Y.; Wang, Z.; Ning, M.; Jin, H.; Guo, D.; Cao, M.; Fang, X.; Zhao, Y.; Li, J. Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Appl. Surf. Sci. 2018, 445, 383–390. [Google Scholar] [CrossRef]
- Xiaoyong, T.; SHANG, Z.; Lixian, Y.; Dichen, L. 3D Printing of Graphene Metamaterial Absorbing Structure. Aeronaut. Manuf. Technol. 2019, 5, 14–22. [Google Scholar] [CrossRef]
- Rani, P.; Deshmukh, K.; Thangamani, J.G.; Pasha, S.K. Additive Manufacturing of Ceramic-Based Materials. Nanotechnol.-Based Addit. Manuf. Prod. Des. Prop. Appl. 2023, 1, 131–160. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Wang, Y.; Cao, J.; Guan, J. Refractory metamaterial microwave absorber with strong absorption insensitive to temperature. Adv. Opt. Mater. 2018, 6, 1800691. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, R.; Wei, C.; Yin, Y.; Zhang, H. The dielectric and microwave absorption properties variation with temperature of La0. 5Sr0. 5CoO3 ceramics and improved microwave absorption by FSS. Ceram. Int. 2021, 47, 26430–26437. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, H.; Shao, T.; Wang, J.; Yang, Z.; Meng, Y.; Feng, M.; Yan, M.; Wang, J.; Qu, S. High temperature metamaterial enhanced electromagnetic absorbing coating prepared with alumina ceramic. J. Alloys Compd. 2021, 874, 159822. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Luo, H.; Chen, F.; Li, D.; Wang, X.; Gong, R. Temperature-insensitive microwave absorption of TiB2-Al2O3/MgAl2O4 ceramics based on controllable electrical conductivity. Sci. China Technol. Sci. 2021, 64, 1250–1263. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Liu, X.; Fan, X.; Cheng, L.; Zhang, L. Multiscale designed SiCf/Si3N4 composite for low and high frequency cooperative electromagnetic absorption. J. Am. Ceram. Soc. 2018, 101, 5552–5563. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y. A broadband metamaterial absorber with temperature scalability to 400 °C. J. Appl. Phys. 2020, 128, 245101. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y. Broadband metamaterial absorber with thermal insensitivity up to 600 °C. Appl. Phys. A 2021, 127, 691. [Google Scholar] [CrossRef]
- Sarraf, F.; Abbatinali, E.; Gorjan, L.; Sebastian, T.; Colombo, P.; Churakov, S.V.; Clemens, F. Effect of MgO sintering additive on mullite structures manufactured by fused deposition modeling (FDM) technology. J. Eur. Ceram. Soc. 2021, 41, 6677–6686. [Google Scholar] [CrossRef]
- Chen, A.-N.; Wu, J.-M.; Liu, K.; Chen, J.-Y.; Xiao, H.; Chen, P.; Li, C.-H.; Shi, Y.-S. High-performance ceramic parts with complex shape prepared by selective laser sintering: A review. Adv. Appl. Ceram. 2018, 117, 100–117. [Google Scholar] [CrossRef]
- Jiwei, C.; Pei, W.; Zhiyuan, L.; Changyong, L.; Jiamin, W.; Zhangwei, C. Research progress on powder-based laser additive manufacturing technology of ceramics. J. Inorg. Mater. 2022, 37, 241–254. [Google Scholar] [CrossRef]
- Gobbin, F.; Elsayed, H.; Italiano, A.; Adrien, J.; Colombo, P.; Maire, E. Large scale additive manufacturing of artificial stone components using binder jetting and their X-ray microtomography investigations. Open Ceram. 2021, 7, 100162. [Google Scholar] [CrossRef]
- Qu, P.; Xiong, D.; Zhu, Z.; Gong, Z.; Li, Y.; Li, Y.; Fan, L.; Liu, Z.; Wang, P.; Liu, C. Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement. Addit. Manuf. 2021, 48, 102394. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, Y.; Liu, Y.; Xu, K.; Zhao, N.; Lao, C.; Shen, J.; Chen, Z. Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries. J. Adv. Ceram. 2022, 11, 295–307. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Zhou, W. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 1249–1258. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Li, J.; Gong, B.; Wang, L.; Lao, C.; Wang, P.; Liu, C.; Feng, Y.; Wang, X. 3D printing of ceramic cellular structures for potential nuclear fusion application. Addit. Manuf. 2020, 35, 101348. [Google Scholar] [CrossRef]
- Su, F.; Liu, Y.; Zhang, C.; Luo, Z.; Cao, J.; Liu, Z.; Wang, P.; Liu, C.; Chen, Z. Photopolymerization and reaction sintering enabled generative shaping and material-forming of complex ceramic structures with high performance. Addit. Manuf. 2022, 51, 102651. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, Z.; Wu, Z.; Qu, C.; Song, Y.; Xing, R.; Kong, J. 3D printing metamaterials for highly efficient electromagnetic wave absorption. Sci. China Mater. 2023, 66, 1283–1312. [Google Scholar] [CrossRef]
- Mei, H.; Zhao, X.; Zhou, S.; Han, D.; Xiao, S.; Cheng, L. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem. Eng. J. 2019, 372, 940–945. [Google Scholar] [CrossRef]
- Mei, H.; Yang, W.; Zhao, X.; Yao, L.; Yao, Y.; Chen, C.; Cheng, L. In-situ growth of SiC nanowires@ carbon nanotubes on 3D printed metamaterial structures to enhance electromagnetic wave absorption. Mater. Des. 2021, 197, 109271. [Google Scholar] [CrossRef]
- Yu, S.; Zeng, T.; Yang, Y.; Jiang, H.; Wu, R.; Fan, M.; Cheng, S. Effect of an annealing treatment on the microstructure and EMW-absorbing properties of SiCw/Si3N4 ceramics fabricated by 3D printing. Ceram. Int. 2023, 49, 1092–1101. [Google Scholar] [CrossRef]
- Eckel, Z.C.; Zhou, C.; Martin, J.H.; Jacobsen, A.J.; Carter, W.B.; Schaedler, T.A. Additive manufacturing of polymer-derived ceramics. Science 2016, 351, 58–62. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Xiong, D.; Xiong, S.; Su, F.; Idrees, M.; Chen, Z. Photopolymerization-based additive manufacturing of ceramics: A systematic review. J. Adv. Ceram. 2021, 10, 442–471. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Soraru, G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, G.; Gong, H.; Sheng, M.; Jing, J.; Lu, J.; Liu, M. Direct ink writing of SiOC ceramics with microwave absorption properties. Ceram. Int. 2023, 49, 12710–12724. [Google Scholar] [CrossRef]
- Yao, L.; Yang, W.; Zhou, S.; Mei, H.; Cheng, L.; Zhang, L. Design paradigm for strong-lightweight perfect microwave absorbers: The case of 3D printed gyroid shellular SiOC-based metamaterials. Carbon 2022, 196, 961–971. [Google Scholar] [CrossRef]
- Zanchetta, E.; Cattaldo, M.; Franchin, G.; Schwentenwein, M.; Homa, J.; Brusatin, G.; Colombo, P. Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 2016, 28, 370–376. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, D.; Guo, X.; Li, Y.; Zhang, Z.; Xu, C. High strength and microwave-absorbing polymer-derived SiCN honeycomb ceramic prepared by 3D printing. J. Eur. Ceram. Soc. 2022, 42, 1322–1331. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Yan, L.; Ma, Y.; Zhang, Z.; Shi, S.; Niu, L.; Li, X.; Lu, B. High performance X-band electromagnetic wave absorption of SiBCN metamaterials fabricated by direct pyrolysis. J. Eur. Ceram. Soc. 2023, 43, 4073–4081. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Liu, X.; Duan, W.; Li, M.; Zhou, Q.; Li, S.; Wang, G.; Han, G. Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption. Chem. Eng. J. 2022, 433, 133743. [Google Scholar] [CrossRef]
Samples | Temperature Range (K) | Thickness (mm) | RLmin (dB) | EAB (GHz) | References |
---|---|---|---|---|---|
RGO/Si3N4 | 323~873 | 4.3 | −14.0 at 873 K | 4.2 at 873 K | [63] |
RGO/SiOC | 293~673 | 2.3 | −50.1 at 673 K | 3.9 at 673 K | [32] |
MWCNTs/SiO2 | 373~773 | 3.5 | −39.4 at 773 K | 4.2 at 773 K | [64] |
SiCnw/C/Si3N4 | 298~873 | 2.9 | −39.7 at 873 K | 4.2 at 873 K | [65] |
SiCf/BN/AlPO4/MWCNT | 298~873 | 3.1 | −22.0 at 873 K | 3.7 at 873 K | [66] |
CF–SiCnw/Si3N4 | 298~1073 | 2.0 | −20.4 at 1037 K | 4.2 at 1037 K | [67] |
RGO–SiCnw/SiBCN | 298~873 | 3.6 | −39.1 at 873 K | 4.2 at 873 K | [68] |
CNT/SiC | 298~873 | 1.8 | −51.0 at 873 K | 2.0 at 873 K | [34] |
Samples | Temperature Range (K) | Thickness (mm) | RLmin (dB) | EAB (GHz) | References |
---|---|---|---|---|---|
Al doped ZnO-ZrSiO4 | 298~773 | 2.86 | ~−15.0 at 773 K | 3.4 at 773 K | [36] |
HfO2-SiBCN | 298~1073 | 1.58 | −44.8 at 1073 K | 2.4 at 1073 K | [37] |
Al2O3-MoSi2-Cu | 298~773 | 1.70 | −18.0 at 773 K | 2.4 at 773 K | [83] |
NiO-SiC | 373~773 | / | ~−20.0 at 773 K | 4.2 at 773 K | [84] |
Fe3O4@ZrO2 | 298~773 | / | ~25.0 at 773 K | / | [35] |
graphene@Fe3O4/SiBCN | 298~873 | 2.35 | −46.0 at 873 K | 3.9 at 873 K | [20] |
ZnO-MWCNT/SiO2 | 323~673 | 2.50 | −13.0 at 673 K | 3.4 at 673 K | [85] |
Samples | Temperature Range (K) | Thickness (mm) | RLmin (dB) | EAB (GHz) | References |
---|---|---|---|---|---|
Fe-doped SiBCN | 298~1158 | 2.0 | −12.6 at 1158 K | 3.2 at 1158 K | [39] |
TiN/BN | 298~873 | 3.0 | −16.7 at 873 K | 2.7 at 873 K | [87] |
Si3N4–SiC/SiO2 | 298~873 | 3.3 | −35.9 at 873 K | 4.0 at 873 K | [88] |
Si3N4/SiC | 473~1273 | 2.8 | ≤−15.0 at 1273 K | 4.2 at 1273 K | [38] |
SiCnw/SiCw | 298~873 | <5.0 | −15.0 at 873 K | 3.0 at 873 K | [89] |
MOF/SiBCN | 298~873 | 2.6 | −30.3 at 873 K | 4.0 at 873 K | [40] |
Zn Al2O3 | 298~873 | 2.5 | −12.1 at 873 K | 3.0 at 873 K | [90] |
Ni-doped SiC | 373~673 | 2.1 | −48.1 at 673 K | 4.2 at 673 K | [91] |
Co-doped SiC | 323~573 | 1.7 | −44.7 at 573 K | 3.0 at 573 K | [92] |
Samples | Temperature Range (K) | Thickness (mm) | Absorbing Bandwidth | Unit Cell | References |
---|---|---|---|---|---|
TiB2/Al2O3/TiB2 | 273~1073 | 2.7 | 10.6~11.0 GHz (RL < −10 dB) | [95] | |
La0.5Sr0.5CoO3/Al2O3 | 373~773 | 1.7, 1.8 | 8.2~12.4 GHz (RL < −10 dB) | [96] | |
MoSi2/Al/water glass | 298~873 | 3.0 | 7.0~13.0 GHz (RL < −10 dB) | [81] | |
Al2O3 | 273~1073 | 1.5 | 10.0~18.0 GHz (RL < −5 dB) | [97] | |
TiB2/Al2O3/MgAl2O4 | 298~1373 | 6.0 | 8.2~18.0 GHz (RL < −5 dB) | [98] | |
SiCf/Si3N4 | 298~773 | 5.0 | 8.0~18.0 GHz (RL < −5 dB) | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Long, F.; Zhang, F.; Yin, H.; Zhao, J.; Xie, M.; An, Y.; Yang, W.; Chi, B. Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review. Nanomaterials 2025, 15, 268. https://doi.org/10.3390/nano15040268
Tang K, Long F, Zhang F, Yin H, Zhao J, Xie M, An Y, Yang W, Chi B. Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review. Nanomaterials. 2025; 15(4):268. https://doi.org/10.3390/nano15040268
Chicago/Turabian StyleTang, Kangkang, Feihang Long, Fenghua Zhang, Hongyuan Yin, Jiuzhou Zhao, Maoqian Xie, Ying An, Weimin Yang, and Baihong Chi. 2025. "Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review" Nanomaterials 15, no. 4: 268. https://doi.org/10.3390/nano15040268
APA StyleTang, K., Long, F., Zhang, F., Yin, H., Zhao, J., Xie, M., An, Y., Yang, W., & Chi, B. (2025). Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review. Nanomaterials, 15(4), 268. https://doi.org/10.3390/nano15040268