Gum Arabic: A Commodity with Versatile Formulations and Applications
Abstract
:1. Gum Arabic (An Overview): Composition, Analogues, and Properties
2. Bibliometric Analysis
3. Gum Arabic-Based Nanoparticles
3.1. Applications of GA-Based NPs
3.1.1. Antimicrobial Activity
3.1.2. Cancer Therapy
3.1.3. Drug Delivery
3.1.4. Bioimaging
3.1.5. Biosensing and Enzyme Immobilization
4. Gum Arabic-Based Hydrogels
4.1. Applications of GA-Based Hydrogels
4.1.1. Tissue Regeneration
4.1.2. Drug Delivery
4.1.3. Wound Dressings
4.1.4. Biomedical Devices
5. Gum Arabic-Based Nanofibers
5.1. Applications of GA-Based NFs
5.1.1. Tissue Regeneration
5.1.2. Wound Healing
5.1.3. Antibacterial and Anti-Biofilm Activities
5.1.4. Food Packaging
6. Gum Arabic-Based Membranes or Scaffolds
6.1. Applications of GA-Based Membranes or Scaffolds
6.1.1. Tissue Regeneration
6.1.2. Drug Delivery
6.1.3. Antifouling Materials
6.1.4. Food Packaging
6.1.5. Biosensing
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, A.; Phillips, G.; Sljivo, A.; Snowden, M.; Williams, P. A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocoll. 1997, 11, 493–505. [Google Scholar] [CrossRef]
- Musa, H.H.; Ahmed, A.A.; Musa, T.H. Chemistry, Biological, and Pharmacological Properties of Gum Arabic. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 797–814. [Google Scholar]
- Williams, P.A.; Phillips, G.O. 11—Gum Arabic. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Saskatoon, UK, 2009; pp. 252–273. [Google Scholar]
- Naser, M.; Azouza, O.I.; Aboubakr, M.K.; Masaud, K.A. Study Influence Arabic Gum on Improved Oil Recovery with Gaberoun Water Leak by Using Spontaneous Imbibition Tests For Sandstone Core Samples. J. Pure Appl. Sci. 2022, 21, 184–189. [Google Scholar] [CrossRef]
- Anderson, D.; Hirst, E.; Stoddart, J. Studies on uronic acid materials. Part XVII. Some structural features of Acacia senegal gum (gum arabic). J. Chem. Soc. C Org. 1966, 1959–1966. [Google Scholar] [CrossRef]
- Joslyn, M. The chemistry of protopectin: A critical review of historical data and recent developments. Adv. Food Res. 1963, 11, 1–107. [Google Scholar]
- Elango, J.; Saravanakumar, K.; Rahman, S.U.; Henrotin, Y.; Regenstein, J.M.; Wu, W.; Bao, B. Chitosan-collagen 3D matrix mimics trabecular bone and regulates RANKL-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis. Biomolecules 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Randall, R.; Phillips, G.; Williams, P. The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocoll. 1988, 2, 131–140. [Google Scholar] [CrossRef]
- Srivastava, M.; Kapoor, V. Seed galactomannans: An overview. Chem. Biodivers. 2005, 2, 295–317. [Google Scholar] [CrossRef]
- Ali, B.H.; Ziada, A.; Blunden, G. Biological effects of gum arabic: A review of some recent research. Food Chem. Toxicol. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C. Acacia senegal vs. Acacia seyal gums–Part 1: Composition and structure of hyperbranched plant exudates. Food Hydrocoll. 2015, 51, 41–53. [Google Scholar] [CrossRef]
- Renard, D.; Lavenant-Gourgeon, L.; Ralet, M.-C.; Sanchez, C. Acacia senegal gum: Continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges. Biomacromolecules 2006, 7, 2637–2649. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, A.A.; Sternberg, M.J.; Makarov, A.A. Polyproline-II helix in proteins: Structure and function. J. Mol. Biol. 2013, 425, 2100–2132. [Google Scholar] [CrossRef] [PubMed]
- Kay, B.K.; Williamson, M.P.; Sudol, M. The importance of being proline: The interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 2000, 14, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.M.; Hsu, V.L. The extended left-handed helix: A simple nucleic acid-binding motif. Proteins Struct. Funct. Bioinform. 2004, 55, 330–338. [Google Scholar] [CrossRef]
- Cubellis, M.V.; Caillez, F.; Blundell, T.; Lovell, S. Properties of polyproline II, a secondary structure element implicated in protein–protein interactions. Proteins Struct. Funct. Bioinform. 2005, 58, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, S.; Rajendran, K. Is Gum Arabic a Good Emulsifier Due to CH... π Interactions? How Urea Effectively Destabilizes the Hydrophobic CH... π Interactions in the Proteins of Gum Arabic than Amides and GuHCl? ACS Omega 2019, 4, 16418–16428. [Google Scholar] [CrossRef] [PubMed]
- Gharanjig, H.; Gharanjig, K.; Hosseinnezhad, M.; Jafari, S.M. Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. Int. J. Biol. Macromol. 2020, 148, 31–40. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.B.; Thomazini, M.; Chaves, I.E.; Ferro-Furtado, R.; Favaro-Trindade, C.S. Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocoll. 2020, 98, 105244. [Google Scholar] [CrossRef]
- Pillai, P.K.; Morales-Contreras, B.E.; Wicker, L.; Nickerson, M.T. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions. Food Chem. 2020, 305, 125433. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocoll. 2017, 69, 369–381. [Google Scholar] [CrossRef]
- Vargas, S.A. High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrason. Sonochem. 2021, 70, 105340. [Google Scholar] [CrossRef]
- Comunian, T.A.; Archut, A.; Gomez-Mascaraque, L.G.; Brodkorb, A.; Drusch, S. The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr. Polym. 2022, 295, 119851. [Google Scholar] [CrossRef]
- Comunian, T.A.; Archut, A.; Gomez-Mascaraque, L.G.; Brodkorb, A.; Drusch, S. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar]
- Hamza, M.F.; Fouda, A.; Wei, Y.; El Aassy, I.E.; Alotaibi, S.H.; Guibal, E.; Mashaal, N.M. Functionalized biobased composite for metal decontamination–Insight on uranium and application to water samples collected from wells in mining areas (Sinai, Egypt). Chem. Eng. J. 2022, 431, 133967. [Google Scholar] [CrossRef]
- Naushad, M.; Sharma, G.; Alothman, Z.A. Photodegradation of toxic dye using Gum Arabic-crosslinked-poly (acrylamide)/Ni (OH) 2/FeOOH nanocomposites hydrogel. J. Clean. Prod. 2019, 241, 118263. [Google Scholar] [CrossRef]
- Rad, Z.P.; Mokhtari, J.; Abbasi, M. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Int. J. Biol. Macromol. 2019, 135, 530–543. [Google Scholar]
- Amalraj, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int. J. Biol. Macromol. 2020, 151, 366–375. [Google Scholar] [CrossRef]
- Amalraj, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Development of gum arabic-based nanocomposite films reinforced with cellulose nanocrystals for strawberry preservation. Food Chem. 2021, 350, 129199. [Google Scholar]
- Wu, K.; Cui, J.; Yi, J.; Liu, X.; Ning, F.; Liu, Y.; Zhang, J. Biodegradable gel electrolyte suppressing water-induced issues for long-life zinc metal anodes. ACS Appl. Mater. Interfaces 2022, 14, 34612–34619. [Google Scholar] [CrossRef]
- Phan, H.T.; Haes, A.J. What does nanoparticle stability mean? J. Phys. Chem. C 2019, 123, 16495–16507. [Google Scholar] [CrossRef] [PubMed]
- Baghban, N.; Momeni, S.; Behboudi, E.; Dianat-Moghadam, H.; Darabi, A.; Targhi, H.S.; Keshavarz, M. Green synthesis of MnO2 NPs using Arabic gum: Assessing its potential antiviral activity against influenza A/H1N1. Virol. J. 2024, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Zhao, C.; Xiang, C.; Zheng, Y.; Zhong, S.; Teng, H.; Chen, L. Gum Arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem. X 2023, 18, 100724. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Al-Dahmash, N.D.; Ranjitsingh, A. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J. Infect. Public Health 2021, 14, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.A.K.; Sibuyi, N.R.S.; Fadaka, A.O.; Maboza, E.; Olivier, A.; Madiehe, A.M.; Meyer, M.; Geerts, G. Prospects of using gum arabic silver nanoparticles in toothpaste to prevent dental caries. Pharmaceutics 2023, 15, 871. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Fayyad, D.M.; El-Telbany, M.; Mohamed, D.A.-A. Antibacterial biofilm efficacy of calcium hydroxide loaded on Gum Arabic nanocarrier: An in-vitro study. BMC Oral Health 2024, 24, 215. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Gisbert-Garzarán, M.; Mediero, A.; Carias-Cálix, R.A.; Jiménez-Jiménez, C.; Esteban, J.; Vallet-Regí, M. Arabic gum plus colistin coated moxifloxacin-loaded nanoparticles for the treatment of bone infection caused by Escherichia coli. Acta Biomater. 2022, 137, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application. J. Environ. Chem. Eng. 2020, 8, 103331. [Google Scholar] [CrossRef]
- Chawla, P.; Kumar, N.; Bains, A.; Dhull, S.B.; Kumar, M.; Kaushik, R.; Punia, S. Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. Int. J. Biol. Macromol. 2020, 146, 232–242. [Google Scholar] [CrossRef]
- Raj, V.; Raorane, C.J.; Lee, J.-H.; Lee, J. Appraisal of chitosan-gum arabic-coated bipolymeric nanocarriers for efficient dye removal and eradication of the plant pathogen Botrytis cinerea. ACS Appl. Mater. Interfaces 2021, 13, 47354–47370. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686–3699. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636. [Google Scholar] [CrossRef] [PubMed]
- Othman, K.A.; Ali, L.I.A.; Qader, A.F.; Omer, R.A.; Amin, A.A. Synthesis, Characterization, and Applications of Carbon Dots for Determination of Pharmacological and Biological Samples: A Review. J. Fluoresc. 2024. [Google Scholar] [CrossRef]
- Anwar, S.; Ding, H.; Xu, M.; Hu, X.; Li, Z.; Wang, J.; Liu, L.; Jiang, L.; Wang, D.; Dong, C.; et al. Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835–8837. [Google Scholar] [CrossRef] [PubMed]
- Sk, M.P.; Jaiswal, A.; Paul, A.; Ghosh, S.S.; Chattopadhyay, A. Presence of amorphous carbon nanoparticles in food caramels. Sci. Rep. 2012, 2, 383. [Google Scholar] [CrossRef]
- Thakur, M.; Pandey, S.; Mewada, A.; Patil, V.; Khade, M.; Goshi, E.; Sharon, M. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J. Drug Deliv. 2014, 2014, 282193. [Google Scholar] [CrossRef] [PubMed]
- Gamal-Eldeen, A.M.; Moustafa, D.; El-Daly, S.M.; El-Hussieny, E.A.; Saleh, S.; Khoobchandani, M.; Bacon, K.L.; Gupta, S.; Katti, K.; Shukla, R. Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice. J. Photochem. Photobiol. B Biol. 2016, 163, 47–56. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; Moustafa, D.; El-Daly, S.M.; Abo-Zeid, M.A.; Saleh, S.; Khoobchandani, M.; Katti, K.; Shukla, R.; Katti, K.V. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed. Pharmacother. 2017, 89, 1045–1054. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; Baghdadi, H.M.; Afifi, N.S.; Ismail, E.M.; Alsanie, W.F.; Althobaiti, F.; Raafat, B.M. Gum Arabic-encapsulated gold nanoparticles modulate hypoxamiRs expression in tongue squamous cell carcinoma. Mol. Cell. Toxicol. 2021, 17, 111–121. [Google Scholar] [CrossRef]
- Lin, X.; Yu, Y.; Wang, X.; Goorani, S. Green synthesis, chemical characterization of gold nanoparticles decorated on biodegradable arabic gum modified magnetic nanoparticles for the treatment of leukemia. Inorg. Chem. Commun. 2022, 146, 110171. [Google Scholar] [CrossRef]
- Hassani, A.; Azarian, M.M.S.; Ibrahim, W.N.; Hussain, S.A. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci. Rep. 2020, 10, 17808. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Azarian, M.M.S.; Ibrahim, W.N.; Hussain, S.A. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem. Lett. Rev. 2021, 14, 404–414. [Google Scholar]
- Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: Tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B 2013, 1, 4972–4982. [Google Scholar] [CrossRef]
- Hassani, A.; Mahmood, S.; Enezei, H.H.; Hussain, S.A.; Hamad, H.A.; Aldoghachi, A.F.; Hagar, A.; Doolaanea, A.A.; Ibrahim, W.N. Formulation, characterization and biological activity screening of sodium alginate-gum arabic nanoparticles loaded with curcumin. Molecules 2020, 25, 2244. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Wang, J.; Jiang, C.; Nie, X.; Hu, Z.; Ye, Q.; Meng, X.; Xiong, H. Development of composite nanoparticles from gum Arabic and carboxymethylcellulose-modified Stauntonia brachyanthera seed albumin for lutein delivery. Food Chem. 2022, 372, 131269. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Liu, C.; Tong, H.; Sun, Y.; Huang, M.; Ren, G.; Xie, H. Encapsulation of EGCG by zein-gum Arabic complex nanoparticles and in vitro simulated digestion of complex nanoparticles. Foods 2022, 11, 2131. [Google Scholar] [CrossRef] [PubMed]
- Gali, L.; Bedjou, F.; Ferrari, G.; Donsì, F. Formulation and characterization of zein/gum arabic nanoparticles for the encapsulation of a rutin-rich extract from Ruta chalepensis L. Food Chem. 2022, 367, 129982. [Google Scholar] [CrossRef]
- Gao, J.; Mao, Y.; Xiang, C.; Cao, M.; Ren, G.; Wang, K.; Ma, X.; Wu, D.; Xie, H. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chem. 2021, 354, 129516. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Kim, D.Y.; Lee, J.-S.; Lee, H.G. Mucoadhesive chitosan–gum arabic nanoparticles enhance the absorption and antioxidant activity of quercetin in the intestinal cellular environment. J. Agric. Food Chem. 2019, 67, 8609–8616. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, Z.; Chen, J.; Li, H.; Tang, H. Investigating of zein-gum arabic-tea polyphenols ternary complex nanoparticles for luteolin encapsulation: Fabrication, characterization, and functional performance. Int. J. Biol. Macromol. 2023, 242, 125059. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, J.; Li, H.; Zhang, Z.; Tang, H. Effects of calcium ions on the particle performance of luteolin-loaded zein-gum arabic-tea polyphenols ternary complex nanoparticles. LWT 2023, 184, 115057. [Google Scholar] [CrossRef]
- Rajabi, H.; Jafari, S.M.; Rajabzadeh, G.; Sarfarazi, M.; Sedaghati, S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123644. [Google Scholar] [CrossRef]
- Rezvani, M.; Manca, M.L.; Muntoni, A.; De Gioannis, G.; Pedraz, J.L.; Gutierrez, G.; Matos, M.; Fadda, A.M.; Manconi, M. From process effluents to intestinal health promotion: Developing biopolymer-whey liposomes loaded with gingerol to heal intestinal wounds and neutralize oxidative stress. Int. J. Pharm. 2022, 613, 121389. [Google Scholar] [CrossRef]
- Li, J.; Zhai, J.; Dyett, B.; Yang, Y.; Drummond, C.J.; Conn, C.E. Effect of gum arabic or sodium alginate incorporation on the physicochemical and curcumin retention properties of liposomes. LWT 2021, 139, 110571. [Google Scholar] [CrossRef]
- Mzwd, E.; Ahmed, N.M.; Suradi, N.; Alsaee, S.K.; Altowyan, A.S.; Almessiere, M.A.; Omar, A.F. Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Sci. Rep. 2022, 12, 10549. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S.; Kumar, A.; Sharma, S.; Tripathi, C.S.P.; Guin, D. Gum Arabic-mediated synthesis of silver nanoparticles for their applications as colorimetric and SERS-based detection of hydrogen peroxide. Anal. Sci. 2024, 40, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Behshad, Y.; Pazhang, M.; Najavand, S.; Sabzi, M. Enhancing Enzyme Stability and Functionality: Covalent Immobilization of Trypsin on Magnetic Gum Arabic Modified Fe3O4 Nanoparticles. Appl. Biochem. Biotechnol. 2023, 196, 5283–5300. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.M. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ. 2019, 27, 871–891. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Hogrebe, N.J.; Reinhardt, J.W.; Gooch, K.J. Biomaterial microarchitecture: A potent regulator of individual cell behavior and multicellular organization. J. Biomed. Mater. Res. Part A 2017, 105, 640–661. [Google Scholar] [CrossRef]
- Revete, A.; Aparicio, A.; Cisterna, B.A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E.A.; Molino, J.; Reginensi, D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int. J. Biomater. 2022, 2022, 3606765. [Google Scholar] [CrossRef]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef]
- Ullah, S.; Chen, X. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl. Mater. Today 2020, 20, 100656. [Google Scholar] [CrossRef]
- Ji, C.; Khademhosseini, A.; Dehghani, F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 2011, 32, 9719–9729. [Google Scholar] [CrossRef]
- Sarika, P.R.; Cinthya, K.; Jayakrishnan, A.; Anilkumar, P.R.; James, N.R. Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Mater. Sci. Eng. C 2014, 43, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sagbas, S.; Butun, S.; Sahiner, N. Modifiable chemically crosslinked poli (κ-carrageenan) particles. Carbohydr. Polym. 2012, 87, 2718–2724. [Google Scholar] [CrossRef]
- Farooq, M.; Sagbas, S.; Sahiner, M.; Siddiq, M.; Turk, M.; Aktas, N.; Sahiner, N. Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohydr. Polym. 2017, 156, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Ihsan, J.; M.K. Mohamed, R.; Khan, M.A.; Rehman, T.U.; Ullah, H.; Ghani, M.; Saeed, S.; Siddiq, M. Highly biocompatible formulations based on Arabic gum Nano composite hydrogels: Fabrication, characterization, and biological investigation. Int. J. Biol. Macromol. 2022, 209, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Makar, L.E.; Nady, N.; Shawky, N.; Kandil, S.H. Genipin versus Ferric Chloride cross-linked unmodified Gum Arabic/Chitosan/nano-Hydroxyapatite nanocomposite hydrogels as potential scaffolds for bone regeneration. Sci. Rep. 2023, 13, 14402. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Wang, J.; Fang, Q.; Peng, Z. Enzymatically Disulfide-Crosslinked Chitosan/Hyaluronic Acid Layer-by-Layer Self-Assembled Microcapsules for Redox-Responsive Controlled Release of Protein. ACS Appl. Mater. Interfaces 2018, 10, 33493–33506. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Q.; Cheng, L.Y.; Xiao, J.X.; Wang, S.Q.; Han, X.N. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. J. Biomater. Appl. 2016, 31, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Dreiss, C.A. Hydrogel design strategies for drug delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. [Google Scholar] [CrossRef]
- Pandit, A.H.; Mazumdar, N.; Imtiyaz, K.; Rizvi, M.M.A.; Ahmad, S. Periodate-Modified Gum Arabic Cross-linked PVA Hydrogels: A Promising Approach toward Photoprotection and Sustained Delivery of Folic Acid. ACS Omega 2019, 4, 16026–16036. [Google Scholar] [CrossRef] [PubMed]
- Shoukat, H.; Buksh, K.; Noreen, S.; Pervaiz, F.; Maqbool, I. Hydrogels as potential drug-delivery systems: Network design and applications. Ther. Deliv. 2021, 12, 375–396. [Google Scholar] [CrossRef]
- Pandit, A.H.; Mazumdar, N.; Imtiyaz, K.; Alam Rizvi, M.M.; Ahmad, S. Self-Healing and Injectable Hydrogels for Anticancer Drug Delivery: A Study with Multialdehyde Gum Arabic and Succinic Anhydride Chitosan. ACS Appl. Bio Mater. 2020, 3, 8460–8470. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Almurisi, S.H.; Al-Japairai, K.; Hilles, A.R.; Alelwani, W.; Bannunah, A.M.; Alshammari, F.; Alheibshy, F. Ibuprofen-Loaded Chitosan-Lipid Nanoconjugate Hydrogel with Gum Arabic: Green Synthesis, Characterisation, In Vitro Kinetics Mechanistic Release Study and PGE2 Production Test. Gels 2021, 7, 254. [Google Scholar] [CrossRef] [PubMed]
- Basyigit, B. Designing Nanoliposome-in-Natural Hydrogel Hybrid System for Controllable Release of Essential Oil in Gastrointestinal Tract: A Novel Vehicle. Foods 2023, 12, 2242. [Google Scholar] [CrossRef]
- Singh, B.; Kumari, A.; Sharma, D.; Dhiman, A.; Kumar, S. Fabricating gum polysaccharides based nano-composites for drug delivery uses via sustainable green approach. Int. J. Biol. Macromol. 2023, 235, 123856. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kumari, A.; Sharma, D.; Dhiman, A.; Kumar, S. Fabrication and evaluation of antimicrobial cellulose/Arabic gum hydrogels as potential drug delivery vehicle. Int. J. Biol. Macromol. 2023, 242, 125083. [Google Scholar]
- Hu, T.; Xu, Y.; Xu, G. Dipeptide-polysaccharides hydrogels through co-assembly. Food Chem. 2023, 422, 136272. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiang, F.; Wang, F.; Liu, Y. Preparation and antitumor study of intelligent injectable hydrogel: Carboxymethyl chitosan–aldehyde gum Arabic composite graphene oxide hydrogel. Int. J. Biol. Macromol. 2024, 259, 129429. [Google Scholar] [CrossRef]
- Qian, Y.; Zheng, Y.; Jin, J.; Wu, X.; Xu, K.; Dai, M.; Niu, Q.; Zheng, H.; He, X.; Shen, J. Immunoregulation in Diabetic Wound Repair with a Photoenhanced Glycyrrhizic Acid Hydrogel Scaffold. Adv. Mater. 2022, 34, 2200521. [Google Scholar] [CrossRef]
- Jin, X.; Shang, Y.; Zou, Y.; Xiao, M.; Huang, H.; Zhu, S.; Liu, N.; Li, J.; Wang, W.; Zhu, P. Injectable Hypoxia-Induced Conductive Hydrogel to Promote Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2020, 12, 56681–56691. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fei, X.; Wang, K.; Xu, L.; Wang, Y.; Tian, J.; Li, Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. J. Mater. Chem. B 2021, 9, 6844–6855. [Google Scholar] [CrossRef] [PubMed]
- Alsakhawy, M.A.; Abdelmonsif, D.A.; Haroun, M.; Sabra, S.A. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int. J. Biol. Macromol. 2022, 222, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Amaya-Chantaca, N.J.; Caldera-Villalobos, M.; Claudio-Rizo, J.A.; Flores-Guía, T.E.; Becerra-Rodríguez, J.J.; Soriano-Corral, F.; Herrera-Guerrero, A. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Prog. Biomater. 2023, 12, 25–40. [Google Scholar] [CrossRef]
- Keykhaee, M.; Rahimifard, M.; Najafi, A.; Baeeri, M.; Abdollahi, M.; Mottaghitalab, F.; Farokhi, M.; Khoobi, M. Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration. Carbohydr. Polym. 2023, 321, 121179. [Google Scholar] [CrossRef] [PubMed]
- Keykhaee, M.; Sorouri, F.; Rahimifard, M.; Baeeri, M.; Forumadi, A.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogel enriched by epidermal growth factor peptide fragment for improving the wound healing process. Heliyon 2023, 9, e22749. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, Z.; Jelodar, M.Z.; Rashidipour, M.; Dadkhah, M.; Adhami, V.; Sefareshi, S.; Ebrahimi, H.A.; Ghasemian, M.; Adeli, M. A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration. DARU J. Pharm. Sci. 2023, 31, 205–219. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Liao, W.; Yu, L.; Zhu, J.; Wu, M.; Peng, Q.; Han, L.; Zeng, H. Recent progress in conductive self-healing hydrogels for flexible sensors. J. Polym. Sci. 2022, 60, 2607–2634. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Nunes, C.S.; Rubira, A.F.; Muniz, E.C.; Fajardo, A.R. Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites. Carbohydr. Polym. 2021, 266, 118116. [Google Scholar] [CrossRef] [PubMed]
- Tomić, N.Z.; Ghodhbane, M.; Matouk, Z.; AlShehhi, N.; Busà, C. Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers. Polymers 2023, 15, 516. [Google Scholar] [CrossRef]
- Elsherbini, A.M.; Sabra, S.A. Nanoparticles-in-nanofibers composites: Emphasis on some recent biomedical applications. J. Control. Release 2022, 348, 57–83. [Google Scholar] [CrossRef]
- Cleeton, C.; Keirouz, A.; Chen, X.; Radacsi, N. Electrospun nanofibers for drug delivery and biosensing. ACS Biomater. Sci. Eng. 2019, 5, 4183–4205. [Google Scholar] [CrossRef] [PubMed]
- Ambekar, R.S.; Kandasubramanian, B. Advancements in nanofibers for wound dressing: A review. Eur. Polym. J. 2019, 117, 304–336. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun nanofibers for sensing and biosensing applications—A review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef] [PubMed]
- Wildy, M.; Lu, P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. Materials 2023, 16, 7062. [Google Scholar] [CrossRef]
- Purohit, A.; Panda, P.K. Thread of hope: Weaving a comprehensive review on electrospun nanofibers for cancer therapy. J. Drug Deliv. Sci. Technol. 2023, 89, 105100. [Google Scholar] [CrossRef]
- Khanzada, H.; Kumpikaitė, E. Anti-bacterial nanofibers and their biomedical applications—A review. J. Text. Inst. 2025, 116, 309–327. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; Gómez-Lazaro, B.; López-Saucedo, F.; Vera-Graziano, R.; Bucio, E.; Mendizábal, E. Electrospun scaffolds for tissue engineering: A review. Macromol 2023, 3, 524–553. [Google Scholar] [CrossRef]
- Broadwin, M.; Imarhia, F.; Oh, A.; Stone, C.R.; Sellke, F.W.; Bhowmick, S.; Abid, M.R. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering 2024, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Anusiya, G.; Jaiganesh, R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydr. Polym. Technol. Appl. 2022, 4, 100262. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, S.; Inal, M.; Akdag, Y.; Gulsun, T.; Sahin, S. Electrospun nanofiber drug delivery systems and recent applications: An overview. J. Drug Deliv. Sci. Technol. 2024, 92, 105342. [Google Scholar] [CrossRef]
- Su, W.; Chang, Z.; Yuyu, E.; Feng, Y.; Yao, X.; Wang, M.; Ju, Y.; Wang, K.; Jiang, J.; Li, P. Electrospinning and electrospun polysaccharide-based nanofiber membranes: A review. Int. J. Biol. Macromol. 2024, 263, 130335. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Chang, Z.; Yuyu, E.; Feng, Y.; Yao, X.; Wang, M.; Ju, Y.; Wang, K.; Jiang, J.; Li, P. An overview of the electrospinning of polymeric nanofibers for biomedical applications related to drug delivery. Adv. Eng. Mater. 2024, 26, 2301297. [Google Scholar]
- Su, W.; Chang, Z.; Yuyu, E.; Feng, Y.; Yao, X.; Wang, M.; Ju, Y.; Wang, K.; Jiang, J.; Li, P. Nanofibers for biomedical and healthcare applications. Macromol. Biosci. 2019, 19, 1800256. [Google Scholar]
- Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr. Polym. 2018, 199, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Fareed, F.; Saeed, F.; Afzaal, M.; Imran, A.; Ahmad, A.; Mahmood, K.; Shah, Y.A.; Hussain, M.; Ateeq, H. Fabrication of electrospun gum Arabic–polyvinyl alcohol blend nanofibers for improved viability of the probiotic. J. Food Sci. Technol. 2022, 59, 4812–4821. [Google Scholar] [CrossRef] [PubMed]
- Kuperkar, K.; Atanase, L.I.; Bahadur, A.; Crivei, I.C.; Bahadur, P. Degradable polymeric bio (nano) materials and their biomedical applications: A comprehensive overview and recent updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef] [PubMed]
- Serio, F.; da Cruz, A.F.; Chandra, A.; Nobile, C.; Rossi, G.R.; D’Amone, E.; Gigli, G.; Del Mercato, L.L.; de Oliveira, C.C. Electrospun polyvinyl-alcohol/gum arabic nanofibers: Biomimetic platform for in vitro cell growth and cancer nanomedicine delivery. Int. J. Biol. Macromol. 2021, 188, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Pedram Rad, Z.; Mokhtari, J.; Abbasi, M. Biopolymer based three-dimensional biomimetic micro/nanofibers scaffolds with porous structures via tailored charge repulsions for skin tissue regeneration. Polym. Adv. Technol. 2021, 32, 3535–3548. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, R.; Ma, J.; Zhang, Y.; Jing, Q.; Lu, W. Examining the wound healing potential of curcumin-infused electrospun nanofibers from polyglutamic acid and gum arabic. Int. J. Biol. Macromol. 2024, 267, 131237. [Google Scholar] [CrossRef] [PubMed]
- Eghbalifam, N.; Shojaosadati, S.A.; Hashemi-Najafabadi, S.; Khorasani, A.C. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int. J. Biol. Macromol. 2020, 155, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Mohan, Y.M.; Raju, K.M.; Sambasivudu, K.; Singh, S.; Sreedhar, B. Preparation of acacia-stabilized silver nanoparticles: A green approach. J. Appl. Polym. Sci. 2007, 106, 3375–3381. [Google Scholar] [CrossRef]
- Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019, 106, 1469–1487. [Google Scholar] [CrossRef] [PubMed]
- Shettigar, K.; Murali, T.S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2235–2246. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Si, Y.; Shu, K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE 2018, 13, e0209020. [Google Scholar] [CrossRef]
- Rihova, M.; Cihalova, K.; Pouzar, M.; Kuthanova, M.; Jelinek, L.; Hromadko, L.; Cicmancova, V.; Heger, Z.; Macak, J.M. Biopolymeric fibers prepared by centrifugal spinning blended with ZnO nanoparticles for the treatment of Acne vulgaris. Appl. Mater. Today 2024, 37, 102151. [Google Scholar] [CrossRef]
- Asthana, N.; Pal, K.; Aljabali, A.A.; Tambuwala, M.M.; de Souza, F.G.; Pandey, K. Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. J. Mol. Struct. 2021, 1229, 129592. [Google Scholar] [CrossRef]
- Lynn, D.D.; Umari, T.; Dunnick, C.A.; Dellavalle, R.P. The epidemiology of acne vulgaris in late adolescence. Adolesc. Health Med. Ther. 2016, 7, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Greydanus, D.E.; Azmeh, R.; Cabral, M.D.; Dickson, C.A.; Patel, D.R. Acne in the first three decades of life: An update of a disorder with profound implications for all decades of life. Disease-a-Month 2021, 67, 101103. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, S.; Chakraborti, S.; Bera, S.; Sheikh, I.A.; Hoque, K.M.; Chakrabarti, P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Alhariry, J.; Kumar, A.; Yadav, T.C.; Yadav, E.; Prasad, R.; Poluri, K.M.; Gupta, P. Tyrosol-gold nanoparticle Functionalized acacia gum-PVA nanofibers for mitigation of Candida biofilm. Microb. Pathog. 2024, 193, 106763. [Google Scholar] [CrossRef]
- Cordeiro, R.d.A.; Teixeira, C.E.; Brilhante, R.S.; Castelo-Branco, D.S.; Alencar, L.P.; de Oliveira, J.S.; Monteiro, A.J.; Bandeira, T.J.; Sidrim, J.J.; Moreira, J.L.B. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Res. 2015, 15, fov012. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Mishra, P.; Verma, N.; Alhariry, J.; Kumar, C.; Prasad, R.; Poluri, K.M. Assessing the eradication potential of fungal biofilms using acacia gum/PVA nanofibers functionalized with geraniol-β cyclodextrin inclusion complex. J. Drug Deliv. Sci. Technol. 2024, 91, 105186. [Google Scholar] [CrossRef]
- Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Tekinay, T.; Uyar, T. Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: Enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv. 2016, 6, 46089–46099. [Google Scholar] [CrossRef]
- Mishra, P.; Gupta, P.; Srivastava, A.K.; Poluri, K.M.; Prasad, R. Eucalyptol/β-cyclodextrin inclusion complex loaded gellan/PVA nanofibers as antifungal drug delivery system. Int. J. Pharm. 2021, 609, 121163. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Gupta, P.; Srivastava, A.K.; Poluri, K.M.; Prasad, R. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater. Res. Express 2018, 5, 035007. [Google Scholar]
- Souza, E.C.; Azevedo, P.O.d.S.d.; Domínguez, J.M.; Converti, A.; Oliveira, R.P.d.S. Influence of temperature and pH on the production of biosurfactant, bacteriocin and lactic acid by Lactococcus lactis CECT-4434. J. Food 2017, 15, 525–530. [Google Scholar]
- Huang, X.; Du, L.; Li, Z.; Yang, Z.; Xue, J.; Shi, J.; Tingting, S.; Zhai, X.; Zhang, J.; Capanoglu, E. Lactobacillus bulgaricus-loaded and chia mucilage-rich gum arabic/pullulan nanofiber film: An effective antibacterial film for the preservation of fresh beef. Int. J. Biol. Macromol. 2024, 266, 131000. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, L.; Li, Z.; Yang, Z.; Xue, J.; Shi, J.; Tingting, S.; Zhai, X.; Zhang, J.; Capanoglu, E. Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: Two-arm randomized, placebo controlled, double-blind trial. Nutr. J. 2012, 11, 1–7. [Google Scholar]
- Nayak, A.K.; Das, B.; Maji, R. Calcium alginate/gum Arabic beads containing glibenclamide: Development and in vitro characterization. Int. J. Biol. Macromol. 2012, 51, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Senthilarasan, K.; Sakthivel, P. Synthesis and Characterization of Hydroxyapatite with Gum Arabic (Biopolymer) Nano Composites for Bone Repair. Int. J. Sci. Res 2014, 3, 2643–2647. [Google Scholar]
- Paramita, N.; Soufyan, A.; Irawan, B.; Damiyanti, M. Effect of gum Arabic (Acacia senegal) topical gel application on demineralized enamel hardness. J. Phys. Conf. Ser. 2018, 1073, 032016. [Google Scholar] [CrossRef]
- Mirza, S.; Jolly, R.; Zia, I.; Saad Umar, M.; Owais, M.; Shakir, M. Bioactive gum Arabic/κ-carrageenan-incorporated nano-hydroxyapatite nanocomposites and their relative biological functionalities in bone tissue engineering. ACS Omega 2020, 5, 11279–11290. [Google Scholar] [CrossRef]
- Fan, X.; Wang, W.; Jiang, N.; Qi, B.; Li, G.; Peng, Z.; Yang, Y.; Xu, Y.; Yusoff, M.; Razali, M.H. Non-cytotoxic and bioactive nanocomposite film of natural Arabic gum incorporating TiO2 nanoparticles for bone tissue regeneration. J. Saudi Chem. Soc. 2023, 27, 101713. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Huang, Q.; Patil, A.B.; Hu, J.; Fan, L.; Yang, Y.; Duan, H.; Dong, X.; Lin, C. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Mater. Sci. Eng. C 2020, 110, 110690. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, Z.; Ma, B.; Yu, L.; He, Y.; Xu, D.; Wu, Y.; Wang, H.; Qiu, G. Enhanced in vitro biocompatibility and osteogenesis of titanium substrates immobilized with dopamine-assisted superparamagnetic Fe3O4 nanoparticles for hBMSCs. R. Soc. Open Sci. 2018, 5, 172033. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Mc Landsborough, L.; McClements, D.J.J.F.H. Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll. 2014, 35, 137–143. [Google Scholar] [CrossRef]
- Morris, G.A.; Kök, S.M.; Harding, S.E.; Adams, G.G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev. 2010, 27, 257–284. [Google Scholar] [CrossRef]
- Espinosa-Andrews, H.; Báez-González, J.G.; Cruz-Sosa, F.; Vernon-Carter, E.J. Gum arabic−chitosan complex coacervation. Biomacromolecules 2007, 8, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Renard, D.; Robert, P.; Schmitt, C.; Lefebvre, J. Structure and rheological properties of acacia gum dispersions. Food Hydrocoll. 2002, 16, 257–267. [Google Scholar] [CrossRef]
- Tsai, R.-Y.; Chen, P.-W.; Kuo, T.-Y.; Lin, C.-M.; Wang, D.-M.; Hsien, T.-Y.; Hsieh, H.-J. Chitosan/pectin/gum Arabic polyelectrolyte complex: Process-dependent appearance, microstructure analysis and its application. Carbohydr. Polym. 2014, 101, 752–759. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.; Vatani, A.; Jamialahmadi, M. Experimental study of micro-particle fouling under forced convective heat transfer. Braz. J. Chem. Eng. 2012, 29, 713–724. [Google Scholar] [CrossRef]
- Flemming, H.-C. Biofouling in water systems–cases, causes and countermeasures. Appl. Microbiol. Biotechnol. 2002, 59, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Judd, S. A review of fouling of membrane bioreactors in sewage treatment. Water Sci. Technol. 2004, 49, 229–235. [Google Scholar] [CrossRef]
- Amjad, Z. Reverse Osmosis: Membrane Technology, Water Chemistry and Industrial Applications; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1685–1718. [Google Scholar] [CrossRef]
- Vrouwenvelder, J.; Van der Kooij, D. Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination 2003, 153, 121–124. [Google Scholar] [CrossRef]
- Bogino, P.C.; de las Mercedes Oliva, M.; Sorroche, F.G.; Giordano, W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci. 2013, 14, 15838–15859. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [PubMed]
- Hooshangi, S.; Bentley, W.E. From unicellular properties to multicellular behavior: Bacteria quorum sensing circuitry and applications. Curr. Opin. Biotechnol. 2008, 19, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Allie, Z.; Jacobs, E.; Maartens, A.; Swart, P. Enzymatic cleaning of ultrafiltration membranes fouled by abattoir effluent. J. Membr. Sci. 2003, 218, 107–116. [Google Scholar] [CrossRef]
- Thayanukul, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems. Water Res. 2013, 47, 225–232. [Google Scholar] [CrossRef]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187–207. [Google Scholar] [CrossRef]
- Manawi, Y.; Kochkodan, V.; Mahmoudi, E.; Johnson, D.J.; Mohammad, A.W.; Atieh, M.A. Characterization and separation performance of a novel polyethersulfone membrane blended with acacia gum. Sci. Rep. 2017, 7, 15831. [Google Scholar] [CrossRef] [PubMed]
- Sabri, S.; Najjar, A.; Manawi, Y.; Eltai, N.O.; Al-Thani, A.; Atieh, M.A.; Kochkodan, V. Antibacterial properties of polysulfone membranes blended with Arabic gum. Membranes 2019, 9, 29. [Google Scholar] [CrossRef]
- Najjar, A.; Sabri, S.; Al-Gaashani, R.; Kochkodan, V.; Atieh, M.A. Enhanced fouling resistance and antibacterial properties of novel graphene oxide-Arabic gum polyethersulfone membranes. Appl. Sci. 2019, 9, 513. [Google Scholar] [CrossRef]
- Vatanpour, V.; Paziresh, S.; Behroozi, A.H.; Karimi, H.; Esmaeili, M.S.; Parvaz, S.; Ghazanlou, S.I.; Maleki, A. Fe3O4@ Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. Chemosphere 2023, 328, 138586. [Google Scholar] [CrossRef]
- Asim, S.; Wasim, M.; Sabir, A.; Shafiq, M.; Andlib, H.; Khuram, S.; Ahmad, A.; Jamil, T. The effect of Nanocrystalline cellulose/Gum Arabic conjugates in crosslinked membrane for antibacterial, chlorine resistance and boron removal performance. J. Hazard. Mater. 2018, 343, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.; Falath, W.; Jacob, K.I.; Shafiq, M.; Gull, N.; Islam, A.; Munawar, M.A.; Zia, S.; Khan, S.M.; Shafeeq, A. Integrally skinned nano-cellular crosslinked asymmetric thin films infused with PEO-PPO-PEO block copolymer/ZnO-NPs for desalination using sea salt. Mater. Chem. Phys. 2016, 183, 595–605. [Google Scholar] [CrossRef]
- Shahgholian, N.; Rajabzadeh, G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocoll. 2016, 59, 17–25. [Google Scholar] [CrossRef]
- Kong, H.; Yang, J.; Zhang, Y.; Fang, Y.; Nishinari, K.; Phillips, G.O. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int. J. Biol. Macromol. 2014, 65, 155–162. [Google Scholar] [CrossRef]
- Abdul-Majeed, M.; Ahmed, A.N.; Al-Furaiji, M.; Ghazi, I. Effect of adding Arabic Gum and Zinc Oxide Nanoparticles to MBR Membranes Supported by Carbon Nanotubes for Ultrafiltration Process of Dairy Wastewater. Pollution 2022, 8, 1233–1249. [Google Scholar]
- Ali, A.M.; Rashid, K.T.; Yahya, A.A.; Majdi, H.S.; Salih, I.K.; Yusoh, K.; Alsalhy, Q.F.; AbdulRazak, A.A.; Figoli, A. Fabrication of gum arabic-graphene (Gga) modified polyphenylsulfone (ppsu) mixed matrix membranes: A systematic evaluation study for ultrafiltration (uf) applications. Membranes 2021, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.A.; Nada, A.A.; Al-Moghazy, M. Self-stick membrane based on grafted gum Arabic as active food packaging for cheese using cinnamon extract. Int. J. Biol. Macromol. 2021, 189, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.A.-M.H.; Kishk, D.M.; Nada, A.A. Green and durable treatment for multifunctional cellulose-containing woven fabrics via TiO2-NP and HMTAP processed in semi-pilot machine. Fibers Polym. 2021, 22, 2815–2825. [Google Scholar] [CrossRef]
- Nada, A.A.; Abdelazeem, R.A.; Elghandour, A.H.; Abou-Zeid, N.Y. Ricinoleic Acid Encapsulation into Ethyl Cellulose Electrospun Fibers. J. Nat. Fibers 2016, 13, 670–681. [Google Scholar]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2018, 119, 120–194. [Google Scholar] [CrossRef] [PubMed]
- Vogiazi, V.; De La Cruz, A.; Mishra, S.; Shanov, V.; Heineman, W.R.; Dionysiou, D.D. A comprehensive review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 2019, 4, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhou, B. Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.; Schuster, B. Electrochemical biosensors based on S-layer proteins. Sensors 2020, 20, 1721. [Google Scholar] [CrossRef]
- Alva, S.; Aziz, A.; Syono, M.I.; Sebayang, D. Development of Solid-state Reference Electrode Based on Sodium Polyanethol Sulfonate Immobilised on Cellulose Acetate. J. Phys. Sci. 2017, 28, 161–179. [Google Scholar] [CrossRef]
- Polk, B.J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuators B Chem. 2006, 114, 239–247. [Google Scholar] [CrossRef]
- Alva, S.; Syono, M.I.B.; Jamil, W.A.B.W. Ag/AgCl reference electrode based on thin film of arabic gum membrane. Indones. J. Chem. 2018, 18, 479–485. [Google Scholar] [CrossRef]
- Abu-Dalo, M.; Othman, A.; Al-Rawashdeh, N. Exudate gum from acacia trees as green corrosion inhibitor for mild steel in acidic media. Int. J. Electrochem. Sci. 2012, 7, 9303–9324. [Google Scholar] [CrossRef]
- Alışık, F.; Burç, M.; Titretir Duran, S.; Güngör, Ö.; Cengiz, M.A.; Köytepe, S. Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym. Bull. 2021, 78, 4699–4719. [Google Scholar] [CrossRef]
Component (mg/g) | A. senegal | A. seyal |
---|---|---|
Ash content | 889.0 ± 0.27 | 893.0 ± 0.02 |
Galactose | 35.8 ±1.20 | 36.9 ± 1.05 |
Arabinose | 30.3 ± 2.50 | 47.6 ± 0.60 |
Rhamnose | 15.5 ± 0.35 | 3.0 ± 0.30 |
Glucuronic acid | 17.4 ± 1.15 | 6.7 ± 0.40 |
Proteins | 27.0 ± 0.01 | 10.0 ± 0.04 |
Minerals | 33.0 ± 0.24 | 40.0 ± 0.07 |
Property | Value |
---|---|
Gum Arabic Density | 1.35–1.49 g/mL |
Gum Arabic Molecular Weight | ≈250 kDa |
Gum Arabic Boiling Point | >250 °C |
Gum Arabic Melting Point | 0–100 °C |
Category | Limitation |
---|---|
Keywords used | “Gum Arabic” OR “Gum Arabic” OR “Acacia Gum” |
Year of publication | 2000–2024 |
Document type | Article |
Publication stage | Final |
Source type | Journal |
Language | English |
Formulation | Role of GA | Incorportaed Active Molecules | Preparation Method | Diameter | Application | Reference |
---|---|---|---|---|---|---|
GA-AgNPs | Reducing agent | Bio-reduction method | less than 10 nm | Potent anti S. mutans effect. | [34] | |
GA-AgNPs | Reducing agent | Bio-reduction method | 220 nm | GA-AgNPs maintain their microbial activity after addition of toothpastes. | [35] | |
Ca (OH2)-loaded-CS/GA-NPs | Coating material | Calcium hydroxide | Polyelectrolyte complexation | 60.47 nm | Improved anti-E. faecalis biofilm efficacy. | [36] |
GA+CN-coated MF-loaded MSNs | Carbon source for bacterial enzyme Polymeric mesh for CN adsorption | Moxifloxacin | Modified Stöber method | 190 nm | Elimination of more than 90% of the bacterial burden within infected bone in a rabbit osteomyletitis model. | [37] |
ZnO nanofluids | Stabilizer | ------ | Precipitation method and microwave heating process | 200–350 nm | Long-term storage stability for up to 6 months with enhanced antibacterial effect. | [38] |
GA-capped CuNPs | Capping agent | Bio-reduction method | 19.6–35.06 nm | Potent anti-Salmonella typhimurium activity. Photocatalytic action reduced 95% of crystal violet and methylene blue after 30 min. | [39] | |
CS/GA-coated liposomes | Coating agent | 5I-1-indole | ------ | ------ | Potent antifungal action against the plant pathogen Botrytis cinerea. | [40] |
MnO2-NPs | Reducing agent | Bio-reduction method | 100 nm | Improved antiviral efficacy against influenza virus H1N1. | [32] | |
Carbon dots | Substrate for carbon dot production | Ciprofloxacin | Microwave-assisted pyrolysis of GA | ~30 nm | Sustained release of the antibiotic with potent antibacterial action against both Gram-positive and Gram-negative bacteria. | [47] |
GA-AuNPs | Coating agent | Chemical reduction | 15–18 nm | PLNS-induced mice treated with GA-AuNPs with or without laser-activated extrinsic cancer apoptotic pathways. | [48] | |
GA-AuNPs | Coating agent | Chemical reduction | 15–18 nm | Treatment of lung tumor-bearing mice with GA-AuNP/laser-activated intrinsic apoptotic pathways. | [49] | |
GA-AuNPs | Stabilizer | Chemical reduction | 75–80 nm | Decreased HIF-1α and its regulator miRNAs and target gene c-Myc at 30% of the IC50. | [50] | |
Fe3O4 NPs@GA/AuNPs | Coating for Fe3O4 Reducing agent for AuNPs | Green reduction technique | 20–35 nm | Anti-leukemia effect in a dose-dependent manner. | [51] | |
GA-Ga-NPs | Coating agent | Freeze-drying process | 33–250 nm | GA-Ga-NPs displayed in vitro antioxidant, antihypertensive and antineoplastic properties. | [52] | |
NiO-NPs | Stabilizer | Sol–gel approach | 59 nm | Photocatalytic activity with 50% growth inhibition of U87MG cells. | [53] | |
Spherical gold NPs (GNPs)-Carbon dots complex | Substrate for carbon dot production | Doxorubicin | Microwave-assisted heating andsucrose density gradient centrifugation | 5–15 nm | Improved in vitro cytotoxicity against MCF-7 cell line. | [54] |
Cur-loaded GA NPs | Wall material | Curcumin (Cur) | Self-assembly approach | 457.4–470.1 nm | Resistant to UV radiation, with 82% of the drug remaining in the NPs after 5 h of exposure to UV. | [33] |
Cur/GA/SA NPs | Wall material | Curcumin (Cur) | Ionotropic gelation method | 10 to 190 nm | Potent antioxidant effect with high toxicity against HepG2 cells. | [55] |
SBSA/GA/CMC nanocomplex | Stabilizer | Luteolin | Self-assembly technique | 204 nm | High stability under varying pH and salt conditions. | [56] |
Zein-GA-NPs | Stabilizer | EGC | Antisolvent precipitation technique | 128.03 nm | Enhanced gastric stability, with only 16.42% of the drug released at pH 1.2. | [57] |
β-Lg/GA nanocomplex | Wall material | EGC | Polyelectrolyte complexation | 133 nm | Efficient antioxidant activity, associated with resistance to gastric acidity and good photostability. | [59] |
CS/GA-NPs | Wall material | Quercetin | Ionic gelation process | 267.3–493.2 nm | Enhanced antioxidant effect of quercetin in intestinal Caco-2 cell model due to improved cellular adhesion and permeation. | [60] |
Zein-GA-tea polyphenols NPs | Stabilizer | Luteolin | Anti-solvent precipitation assay | 202 nm | Excellent antioxidant effectiveness, with sustained release in SGF (26.4%). | [61] |
Zein-GA-tea polyphenols NPs | Stabilizer | Luteolin | Anti-solvent precipitation assay | 202 nm | Low calcium concentration promoted the physiochemical characteristics under various conditions. | [62] |
CS/GA NPs | Wall material | Saffron extract | Ionic gelation approach | 183–295 nm | Saffron release increased exponentially to 80% under acidic pH after 1 h compared to 70% of saffron at neutral pH after 4 h. | [63] |
(GA, alginate, xanthan, and tragacanth)/soy phospholipid/cheese whey nanocomposite | Stabilizer | Gingerol | Green reduction method | ~100 nm | Combintion of GA and tragacanth gum with whey liposomes resulted in fast wound healing and full closure after 72 h of treatment. | [64] |
(GA or sodium alginate)/soy phosphatidyl-choline liposomes | Stabilizer | Curcumin | Ethanol injection technique | 148 nm (GA-liposomes) 299 nm (SA-liposome) | Sodium alginate liposomes exhibited better drug retention and long-term storage. | [65] |
AuNPs | Stabilizer and contrast agent | Pulsed laser ablation process | 1.85–0.99 nm | Improved CT imaging with good brightness and image quality. | [66] | |
GA-Ag NPs | Stabilizer | Bio-reduction method | 15–20 nm | Chemical sensor of H2O2 and glucose. | [67] | |
GA-Fe3O4 NPs | Coating agent | Bio-reduction method | Magnetic support for trypsin enzyme immobilization with the retention of activity up to 15 cycles under various conditions. | [68] |
Gel Composition | Preparation Method | Incorporated Active Molecules | Application | Reference |
---|---|---|---|---|
Chitosan, GA | High-pressure CO2 | Tissue engineering. | [75] | |
Gelatin, GA aldehyde | Covalent cross-linking | Spheroid cell culture. | [76] | |
GA | Reverse micellization | Diethylenetriamine and taurine | Antibacterial hydrogel. | [78] |
GA, chitosan, and nano hydroxyapatite | Physical cross-linking (FeCl3) Covalent cross-linking genipin | Bone regeneration. | [80] | |
Periodate oxidized GA and PVA | Covalent | Folic acid | Oral drug delivery. | [84] |
Succinic-anhydride-modified chitosan, and mulialdehyde GA | Covalent | Nanocurcumin | Injectable hydrogel for locally accessible tumours. | [86] |
Chitosan-GA and PVA | Freeze–thawing cycles | Ibuprofen | Transdermal drug delivery. | [87] |
Pea protein and GA | Physical interactions | Thyme essential oil | Oral drug delivery. | [88] |
GA-TG-Ag NPs and acrylamide | Covalent | Meropenem | Oral drug delivery. | [89] |
GA and microcrystalline cellulose | Covalent | Sulfadiazine | Antimicrobial Application. | [90] |
C13-tryptophan-tyrosine (C13-WY)) with GA | Physical interaction | Docetaxel | Ovarian carcinoma. | [91] |
Polyaldehyde GA and carboxy methyl chitosan | Covalent | Doxorubicin | Cancer treatment. | [92] |
Polyacrylic acid-co-Al3+-co-modified GA | Free radical polymerization and ionic interaction | Wound healing. | [95] | |
GA and pectin | Ionic interaction | Naringin | Wound healing. | [96] |
collagen/GA | Physical interaction | Ketorolac | Wound healing. | [97] |
alginate-GA | Physical interaction | Nerve growth factor and carnosine | Wound healing. | [98] |
alginate-GA | Physical interaction | S-acetamidomethyl Cys20, 31-EGF peptide | Wound healing. | [99] |
GA and gelatin | Covalent | Allantoin | [100] | |
Glycidyl-methacrylate-modified GA and methylene bisacrylamide | Free radical polymerization | Chitin nanowhiskers | Biomedical devices | [103] |
PVA and GA | Covalent | Graphene nanoplatelets, activated carbon black, and reduced graphene oxide | Wearable medical devices. | [104] |
Embedded Active Molecule | NF Composition | Incorporation Method | Diameter | Application | Reference |
---|---|---|---|---|---|
Gum Arabic-coated gold nanoparticles (GA-AuNPs) | Polyvinyl-alcohol (PVA)/Gum Arabic (GA) | Blend electrospinning | 227 nm | Biocompatible scaffold for in vitro cell growth and possible cancer therapy. | [123] |
- | Zein, gum arabic (GA), Calen-dula officinalis (C. officinalis) extract, and poly (ε-caprolactone) (PCL) | Blend electrospinning | Average pore size > 9 μm | Skin tissue engineering with good in vitro cellular proliferation and attachment. | [124] |
Curcumin | keratin, Gum Arabic (GA), and γ-polyglutamic acid (PGA). | Blend in coaxial spinning techniques | 200–300 nm | Facilitates wound healing. Accelerates re-epithelialization process. | [125] |
Silver nanoparticles (AgNPs) | Polycaprolacton (PCL)-coated GA/PVA NFs | Core/shell blend using electrospinning | 150 to 250 nm | Effective antimicrobial effect against different bacterial strains. Good alternative for commercial wound dressing. | [126] |
ZnO NPs in isopropyl myristate | Gum arabic (GA)/ Pullulan (PUL) | Blend using centrifugal spinning. | 40 nm | Improved treatment for Acne vulgaris. | [132] |
Tyrosol- (TYS) functionalized chitosan AuNPs | Polyvinyl-alcohol (PVA)/gum arabic (GA) | Core/shell blend using electrospinning | 170 ± 38 nm | Inhibit fungal biofilm formation. | [138] |
Geraniol with β-cyclodextrin | Polyvinyl-alcohol (PVA)/gum arabic (GA) | Inclusion using electrospinning | 142 ± 61 nm | Eradicates fungal biofilms. | [140] |
Lactobacillus bulgaricus (LB) | Gum Arabic (GA)/pullulan (PUL)/chia mucilage solution (CPS) | Blend electrospinning | Improved survival for probiotics for a longer time. | [145] |
Membrane, Scaffold or Film Composition | Preparation Method | Incorporated Molecule(s) | Application | References |
---|---|---|---|---|
Gum Arabic, κ-carrageenan, scaffold | Co-precipitation | Nano-hydroxyapatite (n-HA) | Bone tissue regeneration. | [150] |
Gum Arabic, glycerol, CaCl2, film | Solvent casting | TiO2 NPs | Bone tissue regeneration. | [151] |
GA and ε-polylysine films immobilized on anodized titanium modified with polydopamine | Layer-by-layer assembly | Orthopedic application with potent antibacterial effect. | [152] | |
Chitosan/pectin/GA membrane, CaCl2 | Ionotropic complexation and solvent casting | Insulin | Controlled drug release. | [158] |
Polysulfone, GA | Phase inversion | Biofouling resistance. | [172] | |
Polyethersulfone, 1 wt. % GA | Phase inversion | Graphene oxide flakes (0.1–5 wt. %) | Fouling resistance. | [173] |
Polyvinyl chloride (PVC) membrane | Non-solvent-induced phase separation | Magnetite@GA | Enhanced antifouling properties with the removal of organic contaminates. | [174] |
Polyvinyl alcohol (PVA) membrane cross-linked with Tetraethylorthosilicate (TEOS) | Solvent casting | Nanocrystalline cellulose (NCC)/GA conjugate and PEO-PPO-PEO block copolymer | Efficient boron removal with good antifouling properties. | [175] |
Polyethersulfone (PES), oxidized multi-walled carbon nanotubes (OMWCNTs), | Phase inversion | ZnO NPs, GA | Good resistance to protein contamination. | [179] |
Polyphenylsulfone (PPSU) membranes | Non-induced phase separation | GA-modified graphene sheets | Ultrafiltration applications. | [180] |
PVA/GA/Chitosan | Solvent casting | Black pepper essential oil (BPEO) and ginger essential oil (GEO) | Use as food packaging or wound-dressing material due to its potent in vitro antibacterial activity. | [28] |
GA grafted with butyl acrylate and hydroxyethyl methacrylate adhesive membrane | Graft copolymerization | Cinnamon essential oil | Active food packaging material for increasing the shelf-life of cheese due to its good antibacterial activity. | [181] |
Ag/Ag Cl reference electrode coated with two layers of GA membrane (20% w/v) | Solvent casting | Increased stability of the Ag/AgCl reference electrode in biosensors. | [192] | |
Platinum electrode (Pt) coated with GA-based polyurethane membranes then L-Phe selective | Solution polymerization technique | Improved molecules at the surface of the electrode and the elimination of other interfering molecules, associated with good sensitivity. | [194] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, S.A.; Elsherbini, A.M.; Alrefaey, H.R.; Adelrahman, K.; Moustafa, A.; Egodawaththa, N.M.; Crawford, K.E.; Nesnas, N.; Sabra, S.A. Gum Arabic: A Commodity with Versatile Formulations and Applications. Nanomaterials 2025, 15, 290. https://doi.org/10.3390/nano15040290
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. Nanomaterials. 2025; 15(4):290. https://doi.org/10.3390/nano15040290
Chicago/Turabian StyleMohamed, Shaymaa A., Asmaa M. Elsherbini, Heba R. Alrefaey, Kareem Adelrahman, Alshaimaa Moustafa, Nishal M. Egodawaththa, Kaitlyn E. Crawford, Nasri Nesnas, and Sally A. Sabra. 2025. "Gum Arabic: A Commodity with Versatile Formulations and Applications" Nanomaterials 15, no. 4: 290. https://doi.org/10.3390/nano15040290
APA StyleMohamed, S. A., Elsherbini, A. M., Alrefaey, H. R., Adelrahman, K., Moustafa, A., Egodawaththa, N. M., Crawford, K. E., Nesnas, N., & Sabra, S. A. (2025). Gum Arabic: A Commodity with Versatile Formulations and Applications. Nanomaterials, 15(4), 290. https://doi.org/10.3390/nano15040290