Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer
Abstract
:1. Introduction
Materials | Density (g/cm3) | Specific Heat Capacity (J/gK) | Thermal Conductivity (W/mK) |
---|---|---|---|
SiO2 | 2.4 [31] | 0.745 [32] | 1.4 [31] |
CuO | 6.5 [32] | 0.536 [32] | 33 [33] |
TiO2 | 4.2 [32] | 0.683 [32] | 5.6 [33] |
Al2O3 | 3.6 [34] | 0.765–0.89 [34,35] | 6.9–40 [34,36,37] |
CNT | 2.1 [34] | 9.124 [34] | 3007.4 [34] |
Cu | 8.933 [33] | - | 400 [33] |
MgO | 3.58 [38] | 0.877 [38] | 48 [38] |
ZnO | 5.606 [38] | 0.514 [38] | 29 [38] |
Ag | 10.49 [31] | - | 420 [31] |
CaCO3 | 2.71 [31] | - | 25.81 [31] |
Base Fluid | NP | Shape | Size | Stabilizing Agent | Studied Temperature | Main Findings | Ref. |
---|---|---|---|---|---|---|---|
Water | TiO2 | Spherical (Anatase) | 15 nm | SDS 1 | −24–−12 °C | For ice formation, rod-shaped TiO2 NPs have better performance because of higher crystallization temperature and enthalpy. | [39] |
Rod (Rutile) | Ø20 nm-L = 50 nm | ||||||
Water | Al2O3 | Spherical | <20 nm | Chitosan | −20–0 °C | Adding NPs enhances water’s TC, while chitosan reduces the TC of the NF. The Al2O3 NPs play the role of promoting heterogeneous nucleation, temperature gradient elimination, and energy transmission during the phase change process of the NF. | [40] |
BaCl2 | TiO2 | Spherical | 20 nm | Hydrophilic Dispersant | −10–0 °C | The addition of TiO2 NPs accelerated the crystallization of the BaCl2 solution. | [41] |
Water | TiO2 | Spherical | 95 nm | PVP 2 | 30–50 °C | PVP outperformed Tween 20 in stabilizing TiO2 NPs. | [42] |
Water | TiO2 | Spherical | 20 nm | Chemical Surface Modification by GPTMS 3 | 25–60 °C | NF containing chemically modified TiO2 NPs showed higher TC compared with the use of commercial stabilizers like CTAB 4 and SDS. | [43] |
Therminol VP-1 | SiO2 | Spherical | 15 nm | No dispersant | 100–220 °C | 1 wt.% SiO2 increased the SHC of therminol oil by 5.41%. | [24] |
Molten Hitec salt 5 | Al2O3 | Spherical | <50 nm | - | 220–350 °C | The use of alumina NPs affects SHC non-uniformly, initially increasing it before decreasing below that of pure molten salt. At levelized temperatures, the NP effect weakens. The highest increase, 19.9%, occurs with 0.0625% NPs at 200–275 °C. | [44] |
Eutectic of alkali chloride salts | SiO2 | Spherical | 27 nm | - | 495–555 °C | The SHC elevation in the NF was attributed to the higher SHC of NPs compared to their bulk material, increased thermal resistance due to the larger NP surface area, and the formation of a layer at the solid–liquid interface. | [45] |
Metal salt eutectic | SiO2 | Spherical | 15 nm | - | 150–560 °C | 2.5 wt.% SiO2 increased the SHC of metal salt by 14.59%. | [24] |
2. Enhancing Thermal Conductivity of Nanofluids
2.1. Review on Thermal Conductivity of Nanofluids
2.1.1. Metallic NPs
2.1.2. Metallic Oxide NPs
2.1.3. Carbonaceous NPs
2.2. Mechanisms
2.2.1. Brownian Motion
2.2.2. Molecular Layering of the Liquid at the NP–Liquid Interface (Kapitza Resistance)
2.2.3. Heat Transfer Dynamics Within Nanoparticles
2.2.4. The Effects of Nanoparticle Clustering
2.3. Factors Affecting the Thermal Conductivity Performance in NFs
2.3.1. Nanoparticle Material
2.3.2. Nanoparticle Concentration
2.3.3. Particle Size
2.3.4. Particle Shape
2.3.5. Nanofluid Stability and Dispersion
2.3.6. Temperature
3. Enhancing Specific Heat Capacity of Nanofluids
3.1. Review on Specific Heat Capacity of Nanofluids
3.1.1. Molecular Liquids
3.1.2. Ionic Liquids
3.1.3. Molten Salts
3.2. Mechanisms
3.2.1. In Molecular Liquids
3.2.2. In Molten Salts
3.3. Factors Affecting the Specific Heat Capacity Performance in NFs
3.3.1. Base Fluid
3.3.2. Nanoparticle Material
3.3.3. Nanoparticle Concentration
3.3.4. Particle Size
3.3.5. Nanofluid Stability and Dispersion
3.3.6. Temperature
4. Enhancing Convective Heat Transfer of Nanofluids
4.1. Effects of NPs on Natural Convection
4.2. Effects of NPs on Forced Convection
4.3. Effects of NPs on Boiling
5. Combined Effects of Nanoparticles on the Thermal Conductivity and Heat Capacity of Nanofluids
5.1. In Nanofluids
5.2. In Phase Change Slurries
5.3. In Nanofluids Containing PCM
6. Outlooks and Conclusions
- ∘
- Stability remains a critical issue, as current surfactants like SDS and SDBS demonstrate limited effectiveness over a wide temperature range, which could impact long-term performance.
- ∘
- NP synthesis methods are often complex and economically unfeasible, highlighting the need for scalable, repeatable, and cost-effective production techniques.
- ∘
- NPs with solid–solid transitions hold the potential to enhance both SHC and TC without significantly increasing viscosity, benefiting thermal energy storage and isothermal applications. This avenue deserves further exploration.
- ∘
- Industrial applications at elevated pressures and temperatures, such as vegetable oil deodorizers, present opportunities for NF utilization to enhance heat recovery in smaller coils. However, current research on thermosyphons is limited to low-temperature and pressure ranges.
- ∘
- While improved thermal properties of NFs can potentially reduce approach temperatures and mitigate issues like hot spots and fouling in heat-sensitive industries, this aspect has been largely overlooked in existing research.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNT | Carbon Nanotube | Nu | Nusselt |
EG | Ethylene Glycol | PCM | Phase Change Material |
EHC | Effective Heat Capacity | PCS | Phase Change Slurry |
H&C | Hamilton and Crosser | Pr | Prantl |
HTF | Heat Transfer Fluid | Re | Reynolds |
MEPCM | Microencapsulated PCM | SHC | Specific Heat Capacity |
MWCNT | Multi-Walled CNT | SSA | Specific Surface Area |
NF | Nanofluid | TC | Thermal Conductivity |
References
- Choi, S.U.S.; Eastman, J.A. 1995-Stephen-Enhancing Thermal Conductivity of Fluids with Nanoparticles.Pdf. In Proceedings of the Enhancing Thermal Conductivity of Fluids with Nanoparticles, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Barai, D.P.; Bhanvase, B.A.; Sonawane, S.H. A Review on Graphene Derivatives-Based Nanofluids: Investigation on Properties and Heat Transfer Characteristics. Ind. Eng. Chem. Res. 2020, 59, 10231–10277. [Google Scholar] [CrossRef]
- Raza, S.H.; Qamar, A.; Noor, F.; Riaz, F.; Usman, M.; Farooq, M.; Sultan, M.; Rehman, A.U.; Shahzadi, A.; Andresen, J.M. Experimental Analysis of Thermal Performance of Direct Absorption Parabolic Trough Collector Integrating Water Based Nanofluids for Sustainable Environment Applications. Case Stud. Therm. Eng. 2023, 49, 103366. [Google Scholar] [CrossRef]
- Yaw, C.T.; Koh, S.P.; Sandhya, M.; Kadirgama, K.; Tiong, S.K.; Ramasamy, D.; Sudhakar, K.; Samykano, M.; Benedict, F.; Tan, C.H. Heat Transfer Enhancement by Hybrid Nano Additives—Graphene Nanoplatelets/Cellulose Nanocrystal for the Automobile Cooling System (Radiator). Nanomaterials 2023, 13, 808. [Google Scholar] [CrossRef]
- Shafiei, A.; Hajjar, A.; Ghasemiasl, R.; Armaghani, T.; Rashad, A.; Nabwey, H.A. Nanoparticles Migration Effects on Enhancing Cooling Process of Triangular Electronic Chips Using Novel E-Shaped Porous Cavity. Comput. Part. Mech. 2023, 10, 793–808. [Google Scholar] [CrossRef]
- Venkatesh, R.; Hossain, I.; Mohanavel, V.; Elahi, M.; Soudagar, M.; Ali Alharbi, S.; Al Obaid, S. Flat Plate Solar Collector Activated with Alumina-Silicon Dioxide-Copper Oxide Hybrid Nanofluid: Thermal Performance Study. Appl. Therm. Eng. 2024, 257, 124496. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Tie, P. The Effect of Surfactants on Heat Transfer Feature of Nanofluids. Exp. Therm. Fluid Sci. 2013, 46, 259–262. [Google Scholar] [CrossRef]
- Rupp, J.; Birringer, R. Enhanced Specific Heat Capacity (Cp) Measurements (150–300 K) of Nanometre Sized. Phys. Rev. B 1987, 36, 7888–7890. [Google Scholar] [CrossRef]
- Yu, Z.J.; Zhang, G.H.; Cui, G.M.; Dou, B.L. Fabrication of Novel Nano Phase Change Emulsion with Low Supercooling and Enhanced Thermal Conductivity. Reneng Dongli Gongcheng/J. Eng. Therm. Energy Power 2020, 35, 542–550. [Google Scholar] [CrossRef]
- Selvam, C.; Mohan Lal, D.; Harish, S. Thermal Conductivity and Specific Heat Capacity of Water–Ethylene Glycol Mixture-Based Nanofluids with Graphene Nanoplatelets. J. Therm. Anal. Calorim. 2017, 129, 947–955. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Choi, S.U.S. Thermal Conductivity of Nanoparticle-Fluid Mixture. J. Thermophys. Heat Transf. 1999, 13, 474–480. [Google Scholar] [CrossRef]
- Díez-Sierra, J.; López-Domínguez, P.; Rijckaert, H.; Rikel, M.; Hänisch, J.; Khan, M.Z.; Falter, M.; Bennewitz, J.; Huhtinen, H.; Schäfer, S.; et al. High Critical Current Density and Enhanced Pinning in Superconducting Films of YBa2Cu3O7-δ Nanocomposites with Embedded BaZrO3, BaHfO3, BaTiO3, and SrZrO3 Nanocrystals. ACS Appl. Nano Mater. 2020, 3, 5542–5553. [Google Scholar] [CrossRef]
- López-Domínguez, P.; Díez-Sierra, J.; Schäfer, S.; Schunk, S.A.; Bäcker, M.; De Buysser, K.; Van Driessche, I.; Rijckaert, H. Size-Controlled Oxide Perovskite Nanocrystal Synthesis: Design, Optimization, and Mechanism Insights. Cryst. Growth Des. 2024, 24, 2362–2369. [Google Scholar] [CrossRef]
- Rijckaert, H.; Cayado, P.; Nast, R.; Sierra, J.D.; Erbe, M.; Dominguez, P.L.; Hänisch, J.; de Buysser, K.; Holzapfel, B.; van Driessche, I. Superconducting HfO2-YBa2Cu3O7-δ Nanocomposite Films Deposited Using Ink-Jet Printing of Colloidal Solutions. Coatings 2020, 10, 17. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y. Thermal Conductivity of Suspensions Containing Nanosized SiC Particles. Int. J. Thermophys. 2002, 23, 571–580. [Google Scholar] [CrossRef]
- Yang, B.; Han, Z.H. Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids. Appl. Phys. Lett. 2006, 89, 083111. [Google Scholar] [CrossRef]
- Fundamentals and Transport Properties of Nanofluids; Murshed, S.M.S., Ed.; The Royal Society of Chemistry: London, UK, 2022; ISBN 978-1-83916-419-4. [Google Scholar]
- Ko, G.H.; Heo, K.; Lee, K.; Kim, D.S.; Kim, C.; Sohn, Y.; Choi, M. An Experimental Study on the Pressure Drop of Nanofluids Containing Carbon Nanotubes in a Horizontal Tube. Int. J. Heat Mass Transf. 2007, 50, 4749–4753. [Google Scholar] [CrossRef]
- Carrillo-Berdugo, I.; Midgley, S.D.; Grau-Crespo, R.; Zorrilla, D.; Navas, J. Understanding the Specific Heat Enhancement in Metal-Containing Nanofluids for Thermal Energy Storage: Experimental and Ab Initio Evidence for a Strong Interfacial Layering Effect. ACS Appl. Energy Mater. 2020, 3, 9246–9256. [Google Scholar] [CrossRef]
- Suganthi, K.S.; Rajan, K.S. Metal Oxide Nanofluids: Review of Formulation, Thermo-Physical Properties, Mechanisms, and Heat Transfer Performance. Renew. Sustain. Energy Rev. 2017, 76, 226–255. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Bi, S.-S.; Shi, L.; Zhang, L.-L. Application of Nanoparticles in Domestic Refrigerators. Appl. Therm. Eng. 2008, 28, 1834–1843. [Google Scholar] [CrossRef]
- Teruel, M.; Aguilar, T.; Martínez-Merino, P.; Carrillo-Berdugo, I.; Gallardo-Bernal, J.J.; Gómez-Villarejo, R.; Alcántara, R.; Fernández-Lorenzo, C.; Navas, J. 2D MoSe2-Based Nanofluids Prepared by Liquid Phase Exfoliation for Heat Transfer applications in Concentrating Solar Power. Sol. Energy Mater. Sol. Cells 2019, 200, 109972. [Google Scholar] [CrossRef]
- Kwak, H.; Shin, D.; Banerjee, D. Enhanced Sensible Heat Capacity of Molten Salt and Conventional Heat Transfer Fluid Based Nanofluid for Solar Thermal Energy Storage Application. In Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Phoenix, AZ, USA, 17–22 May 2010; ASMEDC; Volume 2, pp. 735–739. [Google Scholar]
- Nieto De Castro, C.A.; Murshed, S.M.S.; Lourenço, M.J.V.; Santos, F.J.V.; Lopes, M.L.M.; França, J.M.P. Enhanced Thermal Conductivity and Specific Heat Capacity of Carbon Nanotubes Ionanofluids. Int. J. Therm. Sci. 2012, 62, 34–39. [Google Scholar] [CrossRef]
- Sommers, A.D.; Yerkes, K.L. Experimental Investigation into the Convective Heat Transfer and System-Level Effects of Al2O3-Propanol Nanofluid. J. Nanopart. Res. 2010, 12, 1003–1014. [Google Scholar] [CrossRef]
- Rodríguez-Laguna, M.R.; Castro-Alvarez, A.; Sledzinska, M.; Maire, J.; Costanzo, F.; Ensing, B.; Pruneda, M.; Ordejón, P.; Sotomayor Torres, C.M.; Gómez-Romero, P.; et al. Mechanisms Behind the Enhancement of Thermal Properties of Graphene Nanofluids. Nanoscale 2018, 10, 15402–15409. [Google Scholar] [CrossRef]
- De los Santos, D.; Gallardo, J.J.; Carrillo-Berdugo, I.; Alcántara, R.; Estellé, P.; Gragera, S.; Gragera, M.; Navas, J. Nanofluids Based on Pd Nanoparticles and a Linear Silicone-Based Fluid: Toward Highly Efficient Heat Transfer Fluids for Concentrated Solar Power. ACS Sustain. Chem. Eng. 2024, 12, 2375–2385. [Google Scholar] [CrossRef]
- Han, Z.; Yang, B.; Liu, Y.Y. Phase-Change Nanofluids with Enhanced Thermophysical Properties. In Proceedings of the ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Shanghai, China, 18–21 December 2009; MNHMT2009; Volume 1, pp. 441–447. [Google Scholar] [CrossRef]
- Trisaksri, V.; Wongwises, S. Nucleate Pool Boiling Heat Transfer of TiO2–R141b Nanofluids. Int. J. Heat Mass Transf. 2009, 52, 1582–1588. [Google Scholar] [CrossRef]
- Selvan, P.; Jebakani, D.; Jeyasubramanian, K.; Jones Joseph Jebaraj, D. Enhancement of Thermal Conductivity of Water Based Individual and Hybrid SiO2/Ag Nanofluids with the Usage of Calcium Carbonate Nano Particles as Stabilizing Agent. J. Mol. Liq. 2022, 345, 117846. [Google Scholar] [CrossRef]
- Sang, L.; Liu, T. The Enhanced Specific Heat Capacity of Ternary Carbonates Nanofluids with Different Nanoparticles. Sol. Energy Mater. Sol. Cells 2017, 169, 297–303. [Google Scholar] [CrossRef]
- Pavía, M.; Alajami, K.; Estellé, P.; Desforges, A.; Vigolo, B. A Critical Review on Thermal Conductivity Enhancement of Graphene-Based Nanofluids. Adv. Colloid Interface Sci. 2021, 294, 102452. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, M.; Parasumanna Krishnamurthy, N.; Balasubramanian, M.; Ramani, B.; Wongwises, S.; Abd El-Naby, K.; Sathyamurthy, R. Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid. Micro Nano Lett. 2018, 13, 617–621. [Google Scholar] [CrossRef]
- Altun, A.; Doruk, S.; Şara, O.N. Effect of Al2O3 Nanoparticle Dispersion on the Thermophysical Properties of [EMIM][EtSO4] Ionic Liquid. Int. J. Thermophys. 2023, 44, 106. [Google Scholar] [CrossRef]
- Ju, H.S.; Im, D.H.; Park, S.D.; Lee, H.G.; Kim, E.S. Thermal Conductivity of Al2O3/Poly(Vinyl Butyral) Composites. Jpn. J. Appl. Phys. 2012, 51, 09ML01. [Google Scholar] [CrossRef]
- Jafari, S.M.; Jabari, S.S.; Dehnad, D.; Shahidi, S.A. Heat Transfer Enhancement in Thermal Processing of Tomato Juice by Application of Nanofluids. Food Bioprocess Technol. 2017, 10, 307–316. [Google Scholar] [CrossRef]
- Qamar, A.; Anwar, Z.; Ali, H.; Imran, S.; Shaukat, R.; Mujtaba Abbas, M. Experimental Investigation of Dispersion Stability and Thermophysical Properties of ZnO/DIW Nanofluids for Heat Transfer Applications. Alex. Eng. J. 2022, 61, 4011–4026. [Google Scholar] [CrossRef]
- Mo, S.; Chen, Y.; Jia, L.; Luo, X. Investigation on Crystallization of TiO2–Water Nanofluids and Deionized Water. Appl. Energy 2012, 93, 65–70. [Google Scholar] [CrossRef]
- Teng, T.P. Thermal Conductivity and Phase-Change Properties of Aqueous Alumina Nanofluid. Energy Convers. Manag. 2013, 67, 369–375. [Google Scholar] [CrossRef]
- Long, J.; Zhu, D.; He, Q. Experimental Study on Characteristics of Nanofluid for Low-Temperature Phase Change Cool Storage. In Proceedings of the MNC2007-MicroNanoChina, Sanya, China, 10–13 January 2007; pp. 959–963. [Google Scholar]
- Chakraborty, S.; Sarkar, I.; Behera, D.K.; Pal, S.K.; Chakraborty, S. Experimental Investigation on the Effect of Dispersant Addition on Thermal and Rheological Characteristics of TiO2 Nanofluid. Powder Technol. 2017, 307, 10–24. [Google Scholar] [CrossRef]
- Zhang, H.; Qing, S.; Xu, J.; Zhang, X.; Zhang, A. Stability and Thermal Conductivity of TiO2/Water Nanofluids: A Comparison of the Effects of Surfactants and Surface Modification. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128492. [Google Scholar] [CrossRef]
- Ho, M.X.; Pan, C. Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity. Int. J. Heat Mass Transf. 2014, 70, 174–184. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications. Int. J. Heat Mass Transf. 2011, 54, 1064–1070. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, H.; Wang, L.; Yang, C.-Y.; He, Y.; Yang, W.; Lee, W.P.; Zhang, L.; Huo, R. Heat Transfer Intensification Using Nanofluids. KONA Powder Part. J. 2007, 25, 23–38. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Xu, X.; Keblinski, P.; Yu, W. Nanofluids Can Take the Heat. In Proceedings of the DOE/BES Symposium on Energy Engineering Sciences, Troy, NY, USA, 2002. [Google Scholar]
- Riazi, H.; Murphy, T.; Webber, G.B.; Atkin, R.; Tehrani, S.S.M.; Taylor, R.A. Specific Heat Control of Nanofluids: A Critical Review. Int. J. Therm. Sci. 2016, 107, 25–38. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Ni, R. Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid. Appl. Phys. Lett. 2008, 92, 2–4. [Google Scholar] [CrossRef]
- Hu, P.; Shan, W.L.; Yu, F.; Chen, Z.S. Thermal Conductivity of AlN-Ethanol Nanofluids. Int. J. Thermophys. 2008, 29, 1968–1973. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids. J. Nanopart. Res. 2005, 7, 265–274. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Wei, P.; Gong, Y.; Nie, P.; Chen, X.; Wang, C. Experimental Study on Characteristics of a Nano-Enhanced Phase Change Material Slurry for Low Temperature Solar Energy Collection. Sol. Energy Mater. Sol. Cells 2020, 212, 110513. [Google Scholar] [CrossRef]
- Saeedinia, M.; Akhavan-Behabadi, M.A.; Razi, P. Thermal and Rheological Characteristics of CuO-Base Oil Nanofluid Flow Inside a Circular Tube. Int. Commun. Heat Mass Transf. 2012, 39, 152–159. [Google Scholar] [CrossRef]
- He, Q.; Wang, S.; Tong, M.; Liu, Y. Experimental Study on Thermophysical Properties of Nanofluids as Phase-Change Material (PCM) in Low Temperature Cool Storage. Energy Convers. Manag. 2012, 64, 199–205. [Google Scholar] [CrossRef]
- Mirahmad, A.; Sadrameli, S.M. A Comparative Study on the Modeling of a Latent Heat Energy Storage System and Evaluating Its Thermal Performance in a Greenhouse. Heat Mass Transf. Stoffuebertragung 2018, 54, 2871–2884. [Google Scholar] [CrossRef]
- Mirahamad, A.; Sadrameli, S.M.; Seifi, H. Theoretical and Experimental Studies on a Latent Heat Thermal Energy Storage System (LHTES) Containing Flat Slabs of Phase Change Materials. Int. J. Smart Grid Clean Energy 2014, 3, 234–240. [Google Scholar] [CrossRef]
- Mirahmad, A.; Sadrameli, S.M.; Jamekhorshid, A. A Comprehensive Study on a Latent Heat Thermal Energy Storage System and Its Feasible Applications in Greenhouses. Iran. J. Chem. Eng. 2016, 13, 33–45. [Google Scholar]
- Zhang, G.H.; Zhao, C.Y. Thermal and Rheological Properties of Microencapsulated Phase Change Materials. Renew. Energy 2011, 36, 2959–2966. [Google Scholar] [CrossRef]
- Ho, C.J.; Huang, J.B.; Tsai, P.S.; Yang, Y.M. Preparation and Properties of Hybrid Water-Based Suspension of Al2O3 Nanoparticles and MEPCM Particles as Functional Forced Convection Fluid. Int. Commun. Heat Mass Transf. 2010, 37, 490–494. [Google Scholar] [CrossRef]
- Barbés, B.; Páramo, R.; Blanco, E.; Casanova, C. Thermal Conductivity and Specific Heat Capacity Measurements of CuO Nanofluids. J. Therm. Anal. Calorim. 2014, 115, 1883–1891. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Li, S.; Eastman, J.A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Jana, S.; Salehi-Khojin, A.; Zhong, W.-H. Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives. Thermochim. Acta 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat Transfer Enhancement of Nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Li, D.; Fang, W.; Zhang, Y.; Wang, X.; Guo, M.; Qin, X. Stability and Thermal Conductivity Enhancement of Silver Nanofluids with Gemini Surfactants. Ind. Eng. Chem. Res. 2017, 56, 12369–12375. [Google Scholar] [CrossRef]
- Nine, M.J.; Chung, H.; Tanshen, M.R.; Osman, N.A.B.A.; Jeong, H. Is Metal Nanofluid Reliable as Heat Carrier? J. Hazard. Mater. 2014, 273, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Khamliche, T.; Khamlich, S.; Moodley, M.K.; Mothudi, B.M.; Henini, M.; Maaza, M. Laser Fabrication of Cu Nanoparticles Based Nanofluid with Enhanced Thermal Conductivity: Experimental and Molecular Dynamics Studies. J. Mol. Liq. 2021, 323, 114975. [Google Scholar] [CrossRef]
- Kong, M.; Lee, S. Performance Evaluation of Al2O3 Nanofluid as an Enhanced Heat Transfer Fluid. Adv. Mech. Eng. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Singh, M.K.; Sousa, A.C.M. Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications. Int. Commun. Heat Mass Transf. 2013, 44, 7–14. [Google Scholar] [CrossRef]
- Barai, D.P.; Bhanvase, B.A.; Żyła, G. Experimental Investigation of Thermal Conductivity of Water-Based Fe3O4 Nanofluid: An Effect of Ultrasonication Time. Nanomaterials 2022, 12, 1961. [Google Scholar] [CrossRef] [PubMed]
- García-Vidal, U.O.; Jiménez-Pérez, J.L.; López-Gamboa, G.; Gutiérrez-Fuentes, R.; Sánchez-Ramírez, J.F.; Correa-Pacheco, Z.N.; Romero-Ibarra, I.C.; Cruz-Orea, A. Synthesis of Compact and Porous SiO2 Nanoparticles and Their Effect on Thermal Conductivity Enhancement of Water-Based Nanofluids. Int. J. Thermophys. 2023, 44, 6. [Google Scholar] [CrossRef]
- Marquis, F.D.S.; Chibante, L.P.F. Improving the Heat Transfer of Nanofluids and Nanolubricants with Carbon Nanotubes. JOM 2005, 57, 32–43. [Google Scholar] [CrossRef]
- Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications. Appl. Phys. Lett. 2006, 89, 67–70. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced Thermal Conductivity through the Development of Nanofluids. MRS Proc. 1996, 457, 3. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Ahsan, M.; Qamar, A.; Shaukat, R.; Siddiqi, H.-U.; Anwar, Z.; Farooq, M.; Amjad, M.; Imran, S.; Ahmed, M.; Mujtaba, M.A.; et al. Thermal and Hydraulic Performance of ZnO/EG Based Nanofluids in Mini Tubes of Different Diameters: An Experimental Investigation. Heliyon 2024, 10, e26493. [Google Scholar] [CrossRef] [PubMed]
- Ouikhalfan, M.; Labihi, A.; Belaqziz, M.; Chehouani, H.; Benhamou, B.; Sarı, A.; Belfkira, A. Stability and Thermal Conductivity Enhancement of Aqueous Nanofluid Based on Surfactant-Modified TiO2. J. Dispers. Sci. Technol. 2020, 41, 374–382. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids). Int. J. Heat Mass Transf. 2001, 45, 855–863. [Google Scholar] [CrossRef]
- Yasmin, H.; Giwa, S.O.; Noor, S.; Sharifpur, M. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review. Nanomaterials 2023, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.A.; Phillpot, S.R.; Choi, S.U.S.; Keblinski, P. Thermal Transport in Nanofluids. Annu. Rev. Mater. Res. 2004, 34, 219–246. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids). J. Thermophys. Heat Transf. 2004, 18, 481–485. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saha, S.K.; Yadav, A.; Phelan, P.E.; Prasher, R.S. Determining the Effective Thermal Conductivity of a Nanofluid Using. In Proceedings of the ASME 2003 Heat Transfer Summer Conference, Las Vegas, NV, USA, 21–23 July 2003; pp. 777–783. [Google Scholar]
- Patel, H.E.; Das, S.K.; Sundararajan, T.; Sreekumaran Nair, A.; George, B.; Pradeep, T. Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects. Appl. Phys. Lett. 2003, 83, 2931–2933. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A New Thermal Conductivity Model for Nanofluids. J. Nanopart. Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Ho, C.J.; Lin, K.-H.; Rashidi, S.; Toghraie, D.; Yan, W.-M. Experimental Study on Thermophysical Properties of Water-Based Nanoemulsion of N-Eicosane PCM. J. Mol. Liq. 2021, 321, 114760. [Google Scholar] [CrossRef]
- Xie, H.; Fujii, M.; Zhang, X. Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Colangelo, G.; Favale, E.; de Risi, A.; Laforgia, D. Results of Experimental Investigations on the Heat Conductivity of Nanofluids Based on Diathermic Oil for High Temperature Applications. Appl. Energy 2012, 97, 828–833. [Google Scholar] [CrossRef]
- Sundar, L.S.; Sharma, K.V. Experimental Determination of Thermal Nanoparticles. Int. J. Dyn. Fluids 2008, 4, 57–67. [Google Scholar]
- Philip, J.; Shima, P.D. Thermal Properties of Nanofluids. Adv. Colloid Interface Sci. 2012, 183–184, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, A.; Jastrzembski, K.; Shah, S.I. Enhanced Solubility Ag-Cu Nanoparticles and Their Thermal Transport Properties. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37, 2033–2038. [Google Scholar] [CrossRef]
- Fu, W.; Liang, X.; Xie, H.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Thermophysical Properties of N-Tetradecane@polystyrene-Silica Composite Nanoencapsulated Phase Change Material Slurry for Cold Energy Storage. Energy Build. 2017, 136, 26–32. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F.; Wu, Q. Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Smith, D.S.; Yu, W.; France, D.M.; Singh, D.; Routbort, J.L. Particle Size and Interfacial Effects on Thermo-Physical and Heat Transfer Characteristics of Water-Based α-SiC Nanofluids. Nanotechnology 2010, 21, 215703. [Google Scholar] [CrossRef] [PubMed]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Ghosh, M.M.; Ghosh, S.; Pabi, S.K. Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids. J. Mater. Eng. Perform. 2013, 22, 1525–1529. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A. Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina-Water Nanofluid. Ind. Eng. Chem. Res. 2014, 53, 6677–6684. [Google Scholar] [CrossRef]
- Bruneel, E.; Rijckaert, H.; Diez Sierra, J.; De Buysser, K.V.D. An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. Crystals 2022, 12, 410. [Google Scholar] [CrossRef]
- Goldenstein, L.K.; Radford, D.W.; Fitzhorn, P.A. The Effect of Nanoparticle Additions on the Heat Capacity of Common Coolants. SAE Tech. Pap. 2002, 18, 4. [Google Scholar] [CrossRef]
- Wamkam, C.T.; Opoku, M.K.; Hong, H.; Smith, P. Effects of PH on Heat Transfer Nanofluids Containing ZrO2 and TiO2 Nanoparticles. J. Appl. Phys. 2011, 109, 5–9. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Effect of Prolonged Ultrasonication on the Thermal Conductivity of ZnO-Ethylene Glycol Nanofluids. Thermochim. Acta 2012, 535, 58–65. [Google Scholar] [CrossRef]
- Michael, M.; Zagabathuni, A.; Sikdar, S.; Pabi, S.K.; Ghosh, S. Effect of Dispersion Behavior on the Heat Transfer Characteristics of Alumina Nanofluid: An Experimental Investigation and Development of a New Correlation Function. Int. Nano Lett. 2020, 10, 207–217. [Google Scholar] [CrossRef]
- Madhesh, D.; Kalaiselvam, S. Experimental Study on Heat Transfer and Rheological Characteristics of Hybrid Nanofluids for Cooling Applications. J. Exp. Nanosci. 2015, 10, 1194–1213. [Google Scholar] [CrossRef]
- Sitprasert, C.; Dechaumphai, P.; Juntasaro, V. A Thermal Conductivity Model for Nanofluids Including Effect of the Temperature-Dependent Interfacial Layer. J. Nanopart. Res. 2009, 11, 1465–1476. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Enhanced Heat Transfer and Friction Factor of MWCNT-Fe3O4/Water Hybrid Nanofluids. Int. Commun. Heat Mass Transf. 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Barbés, B.; Páramo, R.; Blanco, E.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Legido, J.L.; Casanova, C. Thermal Conductivity and Specific Heat Capacity Measurements of Al2O3 Nanofluids. J. Therm. Anal. Calorim. 2013, 111, 1615–1625. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. Measurements of Specific Heat and Density of Al2O3 Nanofluid. AIP Conf. Proc. 2008, 1063, 361–370. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Gracia-Fernández, C.; Legido, J.L.; Lugo, L. Specific Heat of Metal Oxide Nanofluids at High Concentrations for Heat Transfer. Int. J. Heat Mass Transf. 2015, 88, 872–879. [Google Scholar] [CrossRef]
- Cherecheş, E.I.; Bejan, D.; Ibanescu, C.; Danu, M.; Minea, A.A. Experimental Investigation of Isobaric Heat Capacity and Viscosity for Suspensions of Alumina Nanoparticles in [C4mim][BF4] Ionic Liquid. J. Therm. Anal. Calorim. 2023, 148, 8879–8888. [Google Scholar] [CrossRef]
- Cherecheş, E.I.; Bejan, D.; Minea, A.A. Experimental on Viscosity and Isobaric Heat Capacity of [C4mim][BF4] Ionic Liquid with MWCNT Nanoparticles. J. Mol. Liq. 2023, 391, 123214. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Enhanced Specific Heat of Silica Nanofluid. J. Heat Transf. 2011, 133, 024501. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications. SAE Tech. Pap. 2010. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M. Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage. Nanoscale Res. Lett. 2013, 8, 448. [Google Scholar] [CrossRef]
- Carrillo-Berdugo, I.; Grau-Crespo, R.; Zorrilla, D.; Navas, J. Interfacial Molecular Layering Enhances Specific Heat of Nanofluids: Evidence from Molecular Dynamics. J. Mol. Liq. 2021, 325, 115217. [Google Scholar] [CrossRef]
- Jin, L.; Noraldeen, S.F.M.; Zhou, L.; Du, X. Molecular Study on the Role of Solid/Liquid Interface in Specific Heat Capacity of thin Nanofluid Film with Different Configurations. Fluid Phase Equilib. 2021, 548, 113188. [Google Scholar] [CrossRef]
- Li, Z.; Cui, L.; Li, B.; Du, X. Mechanism Exploration of the Enhancement of Thermal Energy Storage in Molten Salt Nanofluid. Phys. Chem. Chem. Phys. 2021, 23, 13181–13189. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. Surface and Size Effects on the Specific Heat Capacity of Nanoparticles. Int. J. Thermophys. 2006, 27, 139–151. [Google Scholar] [CrossRef]
- Rizvi, S.M.M.; Shin, D. Mechanism of Heat Capacity Enhancement in Molten Salt Nanofluids. Int. J. Heat Mass Transf. 2020, 161, 120260. [Google Scholar] [CrossRef]
- Jeong, S.; Jo, B. Understanding Mechanism of Enhanced Specific Heat of Single Molten Salt-Based Nanofluids: Comparison with Acid-Modified Salt. J. Mol. Liq. 2021, 336, 116561. [Google Scholar] [CrossRef]
- Yuan, F.; Li, M.J.; Qiu, Y.; Ma, Z.; Li, M.J. Specific Heat Capacity Improvement of Molten Salt for Solar Energy Applications Using Charged Single-Walled Carbon Nanotubes. Appl. Energy 2019, 250, 1481–1490. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Enhanced Specific Heat Capacity of Molten Salt-Based Nanomaterials: Effects of Nanoparticle Dispersion and Solvent Material. Acta Mater. 2014, 75, 80–91. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. International Journal of Heat and Mass Transfer Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids. Int. J. Heat Mass Transf. 2013, 57, 542–548. [Google Scholar] [CrossRef]
- Shin, D.; Tiznobaik, H.; Banerjee, D. Specific Heat Mechanism of Molten Salt Nanofluids. Appl. Phys. Lett. 2014, 104, 121914. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M.; Torre, L. Oxide Nanoparticles in Nitrate Salt Mixture Directly At High Temperature. Sol. Energy Mater. Sol. Cells 2017, 167, 60–69. [Google Scholar] [CrossRef]
- Carrillo-Berdugo, I.; Sampalo-Guzmán, J.; Domínguez-Núñez, A.; Aguilar, T.; Martínez-Merino, P.; Navas, J. Are Nanofluids Suitable for Volumetric Absorption in PTC-CSP Plants? An Exemplified, Realistic Assessment with Characterized Metal-Oil Nanofluids. Energy Fuels 2022, 36, 8413–8421. [Google Scholar] [CrossRef]
- Martínez-Merino, P.; Sani, E.; Mercatelli, L.; Alcántara, R.; Navas, J. WSe2 Nanosheets Synthesized by a Solvothermal Process as Advanced Nanofluids for Thermal Solar Energy. ACS Sustain. Chem. Eng. 2020, 8, 1627–1636. [Google Scholar] [CrossRef]
- Sang, L.; Ai, W.; Wu, Y.; Ma, C. Enhanced Specific Heat and Thermal Conductivity of Ternary Carbonate Nanofluids with Carbon Nanotubes for Solar Power Applications. Int. J. Energy Res. 2020, 44, 334–343. [Google Scholar] [CrossRef]
- Oster, K.; Hardacre, C.; Jacquemin, J.; Ribeiro, A.P.C.; Elsinawi, A. Understanding the Heat Capacity Enhancement in Ionic Liquid-Based Nanofluids (Ionanofluids). J. Mol. Liq. 2018, 253, 326–339. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F.; Du, X.Z.; Yang, Y.P. On the Specific Heat Capacity of CuO Nanofluid. Adv. Mech. Eng. 2010, 2010, 172085. [Google Scholar] [CrossRef]
- Lasfargues, M.; Geng, Q.; Cao, H.; Ding, Y. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific heat Capacity of Impure Binary Nitrate Salt Mixtures. Nanomaterials 2015, 5, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.C.; Huang, C.H. Specific Heat Capacity of Molten Salt-Based Alumina Nanofluid. Nanoscale Res. Lett. 2013, 8, 292. [Google Scholar] [CrossRef]
- Dudda, B.; Shin, D. Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications. Int. J. Therm. Sci. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Honarkhah, R.; Bakhshan, Y.; Rahmati, M.; Khorshidi, J. Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermo-Physical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation. Environ. Energy Econ. Res. 2018, 2, 21–36. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Effect of Dispersion Homogeneity on Specific Heat Capacity Enhancement of Molten Salt Nanomaterials Using Carbon Nanotubes. J. Sol. Energy Eng. Trans. ASME 2015, 137, 011011. [Google Scholar] [CrossRef]
- Ali, N. Graphene-Based Nanofluids: Production Parameter Effects on Thermophysical Properties and Dispersion Stability. Nanomaterials 2022, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, D.; Li, X.; Li, H.; Lei, J. Thermal Energy Storage Behavior of Al2O3-H2O Nanofluids. Thermochim. Acta 2009, 483, 73–77. [Google Scholar] [CrossRef]
- Angayarkanni, S.A.; Sunny, V.; Philip, J. Effect of Nanoparticle Size, Morphology and Concentration on Specific Heat Capacity and Thermal Conductivity of Nanofluids. J. Nanofluids 2015, 4, 302–309. [Google Scholar] [CrossRef]
- Adun, H.; Wole-Osho, I.; Okonkwo, E.C.; Kavaz, D.; Dagbasi, M. A Critical Review of Specific Heat Capacity of Hybrid Nanofluids for Thermal Energy Applications. J. Mol. Liq. 2021, 340, 116890. [Google Scholar] [CrossRef]
- Kamran, M.; Qayoum, A. Experimental Investigation of Natural Convection Behavior of Novel Silver-Doped Titanium Dioxide Hybrid Nanofluid. J. Therm. Anal. Calorim. 2024, 149, 5949–5969. [Google Scholar] [CrossRef]
- Putra, N.; Roetzel, W.; Das, S.K. Natural Convection of Nano-Fluids. Heat Mass Transf. Stoffuebertragung 2003, 39, 775–784. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids). IEEE Trans. Nanotechnol. 2006, 5, 220–227. [Google Scholar] [CrossRef]
- Nnanna, A.G.A. Experimental Model of Temperature-Driven Nanofluid. J. Heat Transf. 2007, 129, 697–704. [Google Scholar] [CrossRef]
- Li, Q.; Xuan, Y. Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid. Sci. China, Ser. E Technol. Sci. 2002, 45, 408–416. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. J. Heat Transf. 2003, 125, 151–155. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels. Microfluid. Nanofluid. 2005, 1, 183–189. [Google Scholar] [CrossRef]
- Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids). Int. J. Heat Mass Transf. 2006, 49, 240–250. [Google Scholar] [CrossRef]
- Balla, H.H.; Abdullah, S.; MohdFaizal, W.; Zulkifli, R.; Sopian, K. Numerical Study of the Enhancement of Heat Transfer for Hybrid CuO-Cu Nanofluids Flowing in a Circular Pipe. J. Oleo Sci. 2013, 62, 533–539. [Google Scholar] [CrossRef]
- Ho, C.J.; Huang, J.B.; Tsai, P.S.; Yang, Y.M. On Laminar Convective Cooling Performance of Hybrid Water-Based Suspensions of Al2O3 Nanoparticles and MEPCM Particles in a Circular Tube. Int. J. Heat Mass Transf. 2011, 54, 2397–2407. [Google Scholar] [CrossRef]
- Tumuluri, K.; Alvarado, J.L.; Taherian, H.; Marsh, C. Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials. Int. J. Heat Mass Transf. 2011, 54, 5554–5567. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Timofeeva, E.V.; Singh, D.; Routbort, J.L. Thermophysical Property-Related Comparison Criteria for Nanofluid Heat Transfer Enhancement in Turbulent Flow. Appl. Phys. Lett. 2010, 96, 3–5. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Effect of Al2O3–Cu/Water Hybrid Nanofluid in Heat Transfer. Exp. Therm. Fluid Sci. 2012, 38, 54–60. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Sarkar, J. Experimental Study on Hydrothermal Characteristics of Shell and Tube Heat Exchanger Using Phase Change Material-Based Hybrid Nanofluid. Heat Mass Transf. Stoffuebertragung 2024, 60, 519–533. [Google Scholar] [CrossRef]
- Roberts, N.S.; Al-Shannaq, R.; Kurdi, J.; Al-Muhtaseb, S.A.; Farid, M.M. Efficacy of Using Slurry of Metal-Coated Microencapsulated PCM for Cooling in a Micro-Channel Heat Exchanger. Appl. Therm. Eng. 2017, 122, 11–18. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Ling, X. An Experimental Study of the Latent Functionally Thermal Fluid with Micro-Encapsulated Phase Change Material Particles Flowing in Microchannels. Appl. Therm. Eng. 2016, 105, 209–216. [Google Scholar] [CrossRef]
- Ghasemi, K.; Bozorgi, M.; Mahmud, S.; Humaira Tasnim, S. Performance and Life Cycle Assessment of Pillow Plate Heat Exchanger Utilizing Microencapsulated Phase Change Material Slurry. Appl. Therm. Eng. 2024, 236, 121454. [Google Scholar] [CrossRef]
- Akhavan-Behabadi, M.A.; Shahidi, M.; Aligoodarz, M.R.; Fakoor-Pakdaman, M. An Experimental Investigation on Rheological Properties and Heat Transfer Performance of MWCNT-Water Nanofluid Flow Inside Vertical Tubes. Appl. Therm. Eng. 2016, 106, 916–924. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Bidkin, I.; Sousa, A.C.M. Experimental Investigations in Heat Transfer and Friction Factor of Magnetic Ni Nanofluid Flowing in a Tube. Int. J. Heat Mass Transf. 2014, 70, 224–234. [Google Scholar] [CrossRef]
- Chandra Sekhara Reddy, M.; Vasudeva Rao, V. Experimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water Based TiO2 Nanofluid in Double Pipe Heat Exchanger with and Without Helical Coil Inserts. Int. Commun. Heat Mass Transf. 2014, 50, 68–76. [Google Scholar] [CrossRef]
- Park, H.S.; Shiferaw, D.; Sehgal, B.R.; Kim, D.K.; Muhammed, M. Film Boiling Heat Transfer on a High Temperature Sphere in Nanofluid. In Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, USA, 11–15 July 2004; Volume 4, pp. 469–476. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.S.; Patel, H.E. Heat Transfer in Nanofluids—A Review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Khandekar, S.; Joshi, Y.M.; Mehta, B. Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids. Int. J. Therm. Sci. 2008, 47, 659–667. [Google Scholar] [CrossRef]
- Noie, S.H.; Heris, S.Z.; Kahani, M.; Nowee, S.M. Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon. Int. J. Heat Fluid Flow 2009, 30, 700–705. [Google Scholar] [CrossRef]
- Chien, H.T.; Tsai, C.I.; Chen, P.H.; Chen, P.Y. Improvement on Thermal Performance of a Disk-Shaped Miniature Heat Pipe with Nanofluid. In Proceedings of the Fifth International Conference onElectronic Packaging Technology Proceedings; ICEPT2003, Shanghai, China, 28–30 October 2003; pp. 389–391. [Google Scholar] [CrossRef]
- Ma, H.B.; Wilson, C.; Yu, Q.; Park, K.; Choi, U.S.; Tirumala, M. An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe. J. Heat Transf. 2006, 128, 1213–1216. [Google Scholar] [CrossRef]
- Tanshen, M.R.; Lee, S.; Kim, J.; Kang, D.; Noh, J.; Chung, H.; Jeong, H.; Huh, S. Pressure Distribution Inside Oscillating Heat Pipe Charged with Aqueous Al2O3 Nanoparticles, MWCNTs and Their Hybrid. J. Cent. S. Univ. 2014, 21, 2341–2348. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, B.; Zhang, S. Properties of Stable Aqueous Nanofluids Composed of Copper Nanoaggregates for Enhancing Heat Transfer. Ind. Eng. Chem. Res. 2022, 61, 1596–1605. [Google Scholar] [CrossRef]
- Li, Q.; Xuan, Y. Enhanced Heat Transfer Behaviors of New Heat Carrier for Spacecraft Thermal Management. J. Spacecr. Rockets 2006, 43, 687–690. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Q.; Qiu, Y. Enhancements in Thermal Properties of Binary Alkali Chloride Salt by Al2O3 Nanoparticles for Thermal Energy Storage. Energy 2024, 301, 131584. [Google Scholar] [CrossRef]
- Nelson, I.C.; Banerjee, D.; Ponnappan, R. Flow Loop Experiments Using Polyalphaolefin Nanofluids. J. Thermophys. Heat Transf. 2009, 23, 752–761. [Google Scholar] [CrossRef]
- Das, N.K.; Santra, S.; Naik, P.K.; Vasa, M.S.; Raj, R.; Bose, S.; Banerjee, T. Evaluation of Thermophysical Properties and Thermal Performance of Amine-Functionalized Graphene Oxide/Deep Eutectic Solvent Nanofluids as Heat-Transfer Media for Desalination Systems. ACS Sustain. Chem. Eng. 2023, 11, 5376–5389. [Google Scholar] [CrossRef]
- Chen, L.; Wang, T.; Zhao, Y.; Zhang, X.R. Characterization of Thermal and Hydrodynamic Properties for Microencapsulated Phase Change Slurry (MPCS). Energy Convers. Manag. 2014, 79, 317–333. [Google Scholar] [CrossRef]
- López-Pedrajas, D.; Borreguero, A.M.; Ramos, F.J.; Rodríguez, J.F.; Jiménez-Vázquez, M.; Carmona, M. Influence of the Dispersion Characteristics for Producing Thermoregulating Nano Phase Change Slurries. Chem. Eng. J. 2023, 452, 139034. [Google Scholar] [CrossRef]
- Han, Z.H.; Cao, F.Y.; Yang, B. Synthesis and Thermal Characterization of Phase-Changeable Indium/Polyalphaolefin Nanofluids. Appl. Phys. Lett. 2008, 92, 243104. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, H.; Liu, J.; Fang, X.; Zhang, Z. Novel Slurry Containing Graphene Oxide-Grafted Microencapsulated Phase Change Material with Enhanced Thermo-Physical Properties and Photo-Thermal Performance. Sol. Energy Mater. Sol. Cells 2015, 143, 29–37. [Google Scholar] [CrossRef]
- Barlak, S.; Sara, O.N.; Karaipekli, A.; Yapıcı, S. Thermal Conductivity and Viscosity of Nanofluids Having Nanoencapsulated Phase Change Material. Nanoscale Microscale Thermophys. Eng. 2016, 20, 85–96. [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhao, C.Y. Thermal Property Investigation of Aqueous Suspensions of Microencapsulated Phase Change Material and Carbon Nanotubes as a Novel Heat Transfer Fluid. Renew. Energy 2013, 60, 433–438. [Google Scholar] [CrossRef]
NP | Base Fluid | %TC Enhancement | %NP Concentration | Ref. | |
---|---|---|---|---|---|
Volume | Mass | ||||
CNT | Oil | 150 | 1 | [47] | |
SWCNT | Oil | 45 | 1 | [71] | |
CuO | EG | 20 | 4 | [52] | |
CuO | Water | 60 | 5 | [73] | |
Cu | EG | 40 | 0.3 | [21] | |
Cu | Water | 74 | 0.3 | [62] | |
Cu | Water | 80 | 8 | [63] | |
Cu | Transformer oil | 45 | 8 | [63] | |
SiC | Water and EG | 15.8–22.9 | 4–4.2 | [15] | |
Fe3O4 | Water | 48 | 2 | [68] | |
Fe3O4 | Water | 24 | 0.025 | [69] | |
Al2O3 | Water | 2–10.8 | 1 | [74] | |
Al2O3 | Water | 9.4–24.3 | 4 | [74] | |
Al2O3 | Water | 30 | 5 | [73] | |
Ag | Water | 35 | 1.2 | [64] | |
ZnO | EG | 14.38 | 0.048 | [75] | |
ZnO | Water | 23.7 | 0.048 | [38] | |
TiO2 | Water | 20 | 2 | [43] | |
TiO2 | Water | 15 | 1.25 | [76] | |
SiO2 | Water | 14.7 | 0.039 | [70] | |
SiO2 | Water | 31.84 | 0.02 | [31] |
Base Fluid | Micro/ Nanoparticle | Particle% | Reynolds | Heat Transfer Improvement | Induced Flow Resistance | Ref. | ||
---|---|---|---|---|---|---|---|---|
Increased Nu% | Increased Convective Heat Transfer Coefficient % | Increased Pressure Drop % | Increased Friction Factor % | |||||
Water | Al2O3+MEPCM (1:1) | 0.01 vol.% | 1500 | +13.06% * | - | - | +8.1% * | [150] |
Water | MWCNT+MEPCM (1:10) | 12.1 mass% | 1250 | −30% * | +108% * | - | [147] | |
Water | Nano-encapsulated PCM | 3.8 mass% | 112 | +82% | - | - | +152% * | [84] |
Water | MEPCM | 10 mass% | 1200 | - | +10.7% * | 60% | - | [151] |
Water | MEPCM | 2 vol.% | 300 | +6.8% * | - | 173% * | - | [152] |
Water | MEPCM | 15 vol.% | - | +6.2% | - | +48% | - | [153] |
Water | Cu NPs | 2 vol.% | 16,000 | +27.2% * | - | 0% | - | [142] |
Water | Al2O3 NPs | 2 vol.% | 300 | - | +11.94% | +35% | - | [37] |
Water + EG (40:60) | Graphene nanoplatelets + cellulose nano | 0.2 mass% | 10,500 | +43.8% * | - | +34% * | - | [4] |
Water | MWCNT | 0.2 mass% | 15,000 | +35% * | - | 23.3% | - | [154] |
Water | Ni NPs | 0.6 vol.% | 15,000 | - | +74.5% * | - | +14% * | [155] |
Water + EG (60:40) | TiO2 NPs | 0.02 vol.% | 15,000 | - | +10.73% | - | +8.73% | [156] |
Base Fluid | NP | NP % | % Heat Transfer Improvement | Convection Type | Ref. |
---|---|---|---|---|---|
Oil | CuO | 2 mass% | 12.7 | Forced | [53] |
Water | Al2O3 | 1.3 vol.% | 19 | Forced | [67] |
Water | Al2O3 | 2 vol.% | 11.94 | Forced | [37] |
Dowtherm | MoSe2 | 0.1 vol.% | 11 | Forced | [23] |
Dowtherm | WSe2 | 0.1 mass% | 34 | Forced | [124] |
Water | PVP/PEG/Cu nanoaggregate | 0.01 g/ml | 20.86 | Forced | [164] |
Water | Cu | 2 vol.% | 60 | Forced | [141,142] |
Water | Al2O3 | 1.25 mass% | 40 | Boiling | [51] |
Perfluoro triethyl amine | Cu | 2 vol% | 75 | Forced | [165] |
Water | TiO2 | 5 mass% | 35 | Natural | [139] |
Water | MWCNT | 1.1 mass% | 22~25 | Forced | [147] |
Water | Al2O3-CuO nanocomposite | 0.1 vol% | 13.56 | Forced | [149] |
Base Fluid | Micro-/Nanoparticle | % Changes in TC | % Changes in Heat Capacity | Ref. |
---|---|---|---|---|
BaCl2 aqueous solution | TiO2 | +16.74% | −12.4% | [54] |
Motor oil | CuO | +6.2% | −23% | [53] |
Water | Al2O3 | +11.8% * | −11.05% * | [37] |
Water + EG | Graphene | +18% | −8% | [10] |
Perfluorohexane | Water | +52% | +126% | [29] |
Ionic fluids | MWCNT | +35.54% | +8% | [25] |
Water | Hybrid of Al2O3 and CNT | +20% | +304% * | [34] |
DMAc | Graphene | +48% | +18% | [27] |
Dowtherm | MoSe2 | +11% | +7% | [23] |
Dowtherm | WSe2 | +64% | +4.7% | [124] |
Molten salt | CNTs | +149.2% | +78.3% | [125] |
Molten salt | Al2O3 | +10% | +14.9% | [166] |
Silicon | Pd | +8.5% | +5.5% | [28] |
Eutectic and azeotropic mixture of biphenyl and diphenyl oxide | Au | +24.6% * | +12% * | [123] |
Polyalphaolefin | Graphite | +740% * | +34% * | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirahmad, A.; Shankar Kumar, R.; Pato Doldán, B.; Prieto Rios, C.; Díez-Sierra, J. Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer. Nanomaterials 2025, 15, 302. https://doi.org/10.3390/nano15040302
Mirahmad A, Shankar Kumar R, Pato Doldán B, Prieto Rios C, Díez-Sierra J. Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer. Nanomaterials. 2025; 15(4):302. https://doi.org/10.3390/nano15040302
Chicago/Turabian StyleMirahmad, Ali, Ravi Shankar Kumar, Breogán Pato Doldán, Cristina Prieto Rios, and Javier Díez-Sierra. 2025. "Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer" Nanomaterials 15, no. 4: 302. https://doi.org/10.3390/nano15040302
APA StyleMirahmad, A., Shankar Kumar, R., Pato Doldán, B., Prieto Rios, C., & Díez-Sierra, J. (2025). Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer. Nanomaterials, 15(4), 302. https://doi.org/10.3390/nano15040302