Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructures
2.1.1. AFM Observation of Nanosheets
2.1.2. XRD Measurements of Nanosheet-Restacked Materials
2.1.3. SEM Observation of Nanosheet-Restacked Materials
2.1.4. BET Analysis
Electrodes | Particle size (μm) | Specific surface area (m2 g−1) | Pore volume (cm3·g−1) |
---|---|---|---|
HNCM | 0.5–2 | 6 | 0.02 |
L-NS-NCM | 1–20 | 8 | 0.02 |
As-prepared S-NS-NCM | 3–50 | 80 | 0.22 |
S-NS-NCM | 0.5–3 | 56 | 0.14 |
2.1.5. Summary of Microstructures
2.2. Electrochemical Properties
2.2.1. General Charge Storage Mechanisms
2.2.2. Cyclic Voltammograms
2.2.3. Charge/Discharge Curves
2.2.4. Cycle Capabilities
2.2.5. Rate Capabilities
2.2.6. AC Impedance Measurements
Electrodes | Charge transfer resistance ( ) | Double-layer capacitance (m2 g−1) | Diffusion resistance (qualitative) |
---|---|---|---|
HNCM | 1.53 | 2.2 × 10−3 | Intermediate |
L-NS-NCM | 3.81 | 2.9 × 10−3 | Large |
S-NS-NCM | 0.56 | 5.7 × 10−2 | Small |
2.2.7. Discussion
3. Experimental Section
3.1. Material Synthesis
3.2. Characterizations
3.3. Electrochemical Measurements
4. Conclusions
Acknowledgments
References
- Nishino, A. Capacitors: Operating principles, current market and technical trends. J. Power Sources 1996, 60, 137–147. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Faggioli, E.; Rena, P.; Danel, V.; Andrieu, X.; Mallant, R.; Kahlen, H. Supercapacitors for the energy management of electric vehicles. J. Power Sources 1999, 84, 261–269. [Google Scholar] [CrossRef]
- Zheng, J.P.; Cygan, P.J.; Jow, T.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703. [Google Scholar] [CrossRef]
- Naoi, K.; Ishimoto, S.; Ogihara, N.; Nakagawa, Y.; Hatta, S. Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J. Electrochem. Soc. 2009, 156, A52–A59. [Google Scholar]
- Sugimoto, W.; Yokoshima, K.; Ohuchi, K.; Murakami, Y.; Takasu, Y. Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J. Electrochem. Soc. 2006, 153, A255–A260. [Google Scholar]
- Hu, C.-C.; Chen, W.-C. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim. Acta 2004, 49, 3469–3477. [Google Scholar]
- Chen, W.-C.; Hu, C.-C.; Wang, C.-C.; Min, C.-K. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors. J. Power Sources 2004, 125, 292–298. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, D.; Yang, M.; Schmuki, P. Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 2011, 47, 7746–7748. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MoO3 nanobelts: Synthesis, photochromic, and electrochromic properties. Chem. Mater. 2009, 21, 5681–5690. [Google Scholar] [CrossRef]
- Pang, S.C.; Anderson, M.A.; Chapman, T.W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444–450. [Google Scholar]
- Sivakkumar, S.R.; Ko, J.; Kim, D.; Kim, B.C.; Wallace, G.G. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim. Acta 2007, 52, 7377–7385. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef]
- Xu, C.-L.; Bao, S.-J.; Kong, L.-B.; Li, H.; Li, H.-L. Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor. J. Solid State Chem. 2006, 179, 1351–1355. [Google Scholar] [CrossRef]
- Jeong, Y.U.; Manthiram, A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 2002, 149, A1419–A1422. [Google Scholar] [CrossRef]
- Reddy, R.N.; Reddy, R.G. Sol-gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124, 330–337. [Google Scholar] [CrossRef]
- Yuan, C.; Su, L.; Gao, B.; Zhang, X. Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim. Acta 2008, 53, 7039–7047. [Google Scholar] [CrossRef]
- Jang, H.; Suzuk, S.; Miyayama, M. Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J. Electrochem. Soc. 2012, 159, A1425–A1430. [Google Scholar] [CrossRef]
- Jang, H.; Suzuki, S.; Miyayama, M. Electrode properties of nanosheet-derived MnO2 for electrochemical capacitors. ECS Trans. 2011, 33, 145–154. [Google Scholar] [CrossRef]
- Yano, M.; Suzuki, S.; Miyayama, M. MnO2 nanosheets thin-film electrodes for electrochemical capacitors. ECS Trans. 2011, 35, 187–194. [Google Scholar] [CrossRef]
- Kintsu, Y.; Suzuki, S.; Miyayama, M. Electrochemical properties of Ba(MnPO4)2·H2O in alkaline aqueous electrolytes. Ceramic Int. 2013, in press.. [Google Scholar]
- Xionghan, F.; Wenfeng, T.; Fan, L.; Qiaoyun, H.; Xiangwen, L. Pathways of birnessite formation in alkali medium. Sci. China Ser. D 2005, 48, 1438–1451. [Google Scholar] [CrossRef]
- Hem, J.D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem. Geol. 1979, 21, 199–218. [Google Scholar] [CrossRef]
- McBreen, J. The electrochemistry of β-MnO2 and γ-MnO2 in alkaline electrolyte. Electrochim. Acta 1975, 20, 221–225. [Google Scholar] [CrossRef]
- Kang, S.-H.; Kim, J.; Stoll, M.E.; Abraham, D.; Amine, K. Layered Li(Ni0.5−xMn0.5−xM2x′)O2 (M′=Co, Al, Ti; x = 0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources 2002, 112, 41–48. [Google Scholar] [CrossRef]
- Ngala, J.K.; Chernova, N.A.; Ma, M.; Mamak, M.; Zavalij, P.Y.; Whittingham, M.S. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem. 2004, 14, 214–220. [Google Scholar] [CrossRef]
- Lee, M.-H.; Kang, Y.-J.; Myung, S.-T.; Sung, Y.-K. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948. [Google Scholar] [CrossRef]
- Park, S.H.; Yoon, C.S.; Kang, S.G.; Kim, H.-S.; Moon, S.-I.; Sun, Y.-K. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim. Acta 2004, 49, 557–563. [Google Scholar] [CrossRef]
- Idemoto, Y.; Matsui, T. Thermodynamic stability, crystal structure, and cathodic performance of Lix(Ni1/3Co1/3Mn1/3)O2 dependent on the synthetic process and Li content. Solid State Ionics 2008, 179, 625–635. [Google Scholar] [CrossRef]
- Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151. [Google Scholar]
- Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. Crystal and electronic structures of superstructural Li1-x[Ni1/3Co1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 2003, 119–121, 644–648. [Google Scholar] [CrossRef]
- Kim, J.-M.; Chung, H.-T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim. Acta 2004, 49, 937–944. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, W.; Yu, L.; Zhao, H.; Li, T. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction. J. Alloys Compd. 2008, 449, 326–330. [Google Scholar] [CrossRef]
- Yano, M.; Suzuki, S.; Miyayama, M.; Ohgaki, M. Electrochemical properties of layer-structured Hx(Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors in alkaline aqueous solutions. J. Asian Ceram. Soc. 2013. submitted for publication.. [Google Scholar]
- Suzuki, S.; Takahashi, S.; Sato, K.; Miyayama, M. High-rate electrode properties of Li-Mn-oxide synthesized by reassembly of MnO2 nanosheets for Li-ion battery. Key Eng. Mater. 2006, 320, 223–226. [Google Scholar] [CrossRef]
- Suzuki, S.; Miyayama, M. Lithium intercalation properties of reassembled titanate/carbon composites. J. Electrochem. Soc. 2007, 154, A438–A443. [Google Scholar] [CrossRef]
- Omomo, Y.; Sasaki, T.; Wang, L.; Watanabe, M. Redoxable nanosheet crystallites of MnO2 derived via delamination of layered manganese oxide. J. Am. Chem. Soc. 2003, 125, 3568–3575. [Google Scholar] [CrossRef]
- Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 2004, 126, 5851–5858. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Ooi, K.; Kanoh, H.; Tang, W.P.; Tomida, T. Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 2000, 16, 4154–4164. [Google Scholar] [CrossRef]
- Oh, E.-J.; Kim, T.W.; Lee, K.M.; Song, M.-S.; Jee, A.-Y.; Lim, S.T.; Ha, H.-W.; Lee, M.; Choy, J.-H.; Hwang, S.-J. Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations. ACS Nano 2010, 4, 4437–4444. [Google Scholar] [CrossRef]
- Benhaddad, L.; Makhloufi, L.; Messaoudi, B.; Takenouti, H. Reactivity of nanostructured MnO2 in alkaline medium studied with a micro-cavity electrode: Effect of synthesizing temperature. Appl. Mater. Interfaces 2009, 1, 424–432. [Google Scholar] [CrossRef]
- Kozawa, A.; Yeager, J.F. The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J. Electrochem. Soc. 1965, 112, 959–963. [Google Scholar] [CrossRef]
- Kozawa, A.; Yeager, J.F. Cathodic reduction mechanism of MnOOH to Mn(OH)2 in alkaline electyrolyte. J. Electrochem. Soc. 1968, 115, 1003–1007. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Yan, J. Electrochemical behaviour of Ni(OH)2 ultrafine powder. J. Power Sources 1998, 75, 283–287. [Google Scholar] [CrossRef]
- Gupta, V.; Kusahara, T.; Toyoma, H.; Gupta, S.; Miura, N. Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox capacitors. Electrochem. Commun. 2007, 9, 2315–2319. [Google Scholar] [CrossRef]
- Atlung, S.; Jacobsen, T. On the ac-impedance of electroactive powders. γ-manganese dioxide. Electrochim. Acta 1976, 21, 575–584. [Google Scholar] [CrossRef]
- Qu, D. Application of a.c. impedance technique to the study of the proton diffusion process in the porous MnO2 electrode. Electrochim. Acta 2003, 48, 1675–1684. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hirayama, M.; Konishi, H.; Sonoyama, N.; Dupre, N.; Guyomard, D.; Tamura, K.; Mizuki, J.; Kanno, R. Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering. Phys. Chem. Chem. Phys. 2010, 12, 3815–3823. [Google Scholar] [CrossRef]
© 2013 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yano, M.; Suzuki, S.; Miyayama, M.; Ohgaki, M. Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors. Nanomaterials 2013, 3, 204-220. https://doi.org/10.3390/nano3020204
Yano M, Suzuki S, Miyayama M, Ohgaki M. Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors. Nanomaterials. 2013; 3(2):204-220. https://doi.org/10.3390/nano3020204
Chicago/Turabian StyleYano, Masato, Shinya Suzuki, Masaru Miyayama, and Masataka Ohgaki. 2013. "Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors" Nanomaterials 3, no. 2: 204-220. https://doi.org/10.3390/nano3020204
APA StyleYano, M., Suzuki, S., Miyayama, M., & Ohgaki, M. (2013). Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors. Nanomaterials, 3(2), 204-220. https://doi.org/10.3390/nano3020204