Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage
Abstract
:1. Introduction
2. Results and Discussion
Resistance (Ω) | Fresh Electrode | Cycled Electrode |
---|---|---|
Rs | 3.74 | 9.02 |
Rc or RSEI | 111 | 42 |
Rct | 695 | 215 |
3. Experimental Section
3.1. Sample Preparation and Characterization
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author contributions
Conflicts of Interest
References
- Wang, Y.; Zeng, J.; Li, J.; Cui, X.; Al-Enizi, A.M.; Zhang, L.; Zheng, G. One-dimensional nanostructures for flexible supercapacitors. J. Mater. Chem. A 2015, 3, 16382–16392. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, X.; Shi, S.; Zhao, X.; Zhang, H.; Ge, X.; Cai, G.; Gu, C.; Wang, X.; et al. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim. Acta 2014, 116, 467–474. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xia, X.; Yin, J.; Chen, Q. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim. Acta 2015, 160, 15–21. [Google Scholar] [CrossRef]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Armstrong, A.R.; Jiao, F.; Bruce, P.G. Influence of size on the rate of mesoporous electrodes for lithium batteries. J. Am. Chem. Soc. 2010, 132, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Zhang, B.; Loh, K.P.; Chowdari, B.V.R. Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. CrystEngComm 2013, 15, 3568–3574. [Google Scholar] [CrossRef]
- Reddy, M.V.; Zhang, B.; Nicholette, L.J.; Zhang, K.; Chowdari, B.V.R. Molten salt synthesis and its electrochemical characterization of Co3O4 for lithium batteries. Electrochem. Solid State Lett. 2011, 14, A79–A82. [Google Scholar] [CrossRef]
- Reddy, M.V.; Prithvi, G.; Loh, K.P.; Chowdari, B.V.R. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Cai, Y.; Fan, J.; Loh, K.P.; Chowdari, B.V.R. Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Adv. 2012, 2, 9619–9625. [Google Scholar] [CrossRef]
- Reddy, M.V.; Kenrich, K.Y.H.; Wei, T.Y.; Chong, G.Y.; Leong, G.H.; Chowdari, B.V.R. Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J. Electrochem. Soc. 2011, 158, A1423–A1430. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Reddy, M.V.; Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Rahim, M.H.A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 2015, 161, 312–321. [Google Scholar] [CrossRef]
- Li, W.; Xu, L.; Chen, J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851–857. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Chen, B.; Wu, J.; Ma, X.; Liu, Z.; Zhang, Y.; Yang, D.; Huang, X.; Tu, J. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for li-battery applications. Adv. Mater. 2007, 19, 4505–4509. [Google Scholar] [CrossRef]
- Lou, X.W.; Deng, D.; Lee, J.Y.; Feng, J.; Archer, L.A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262. [Google Scholar] [CrossRef]
- Yao, M.; Hu, Z.; Xu, Z.; Liu, Y. Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J. Alloy. Compd. 2015, 644, 721–728. [Google Scholar] [CrossRef]
- Xu, J.; Gao, L.; Cao, J.; Wang, W.; Chen, Z. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736. [Google Scholar] [CrossRef]
- Tong, G.; Liu, Y.; Guan, J. In situ gas bubble-assisted one-step synthesis of polymorphic Co3O4 nanostructures with improved electrochemical performance for lithium ion batteries. J. Alloy. Compd. 2014, 601, 167–174. [Google Scholar] [CrossRef]
- Xing, L.; Chen, Z.; Xue, X. Controllable synthesis Co3O4 nanorods and nanobelts and their excellent lithium storage performance. Solid State Sci. 2014, 32, 88–93. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Zhai, C.; Ma, X.; Du, N.; Tu, J.; Yang, D. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology 2008, 19. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, J.; Li, Q.; Sun, G.; Wang, E.; Li, S.; Gu, J.; Ju, M. Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries. J. Solid State Chem. 2009, 182, 3177–3182. [Google Scholar] [CrossRef]
- Vijayanand, S.; Kannan, R.; Potdar, H.S.; Pillai, V.K.; Joy, P.A. Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries. J. Appl. Electrochem. 2013, 43, 995–1003. [Google Scholar] [CrossRef]
- Cui, L.; Li, J.; Zhang, X.-G. Preparation and properties of Co3O4 nanorods as supercapacitor material. J. Appl. Electrochem. 2009, 39, 1871–1876. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, T.; Jiang, K.; Da, P.; Peng, Z.; Tang, J.; Kong, B.; Cai, W.-B.; Yang, Z.; Zheng, G. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4. [Google Scholar] [CrossRef]
- Meher, S.K.; Rao, G.R. Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J. Phys. Chem. C 2011, 115, 25543–25556. [Google Scholar] [CrossRef]
- Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2007, 8, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Tu, J.; Mai, Y.; Wang, X.; Gu, C.; Zhao, X. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319–9325. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Chen, W.; Cha, D.; Alshareef, H.N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559–2567. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Tu, J.; Zhang, Y.; Mai, Y.; Wang, X.; Gu, C.; Zhao, X. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Lu, L.; Lin, J. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, P.; Long, Z.; Jiang, Y.; Huang, J.; Yan, W.; Liu, G. Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries. Mater. Lett. 2008, 62, 3410–3412. [Google Scholar] [CrossRef]
- Xue, X.; Yuan, S.; Xing, L.; Chen, Z.; He, B.; Chen, Y. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Chem. Commun. 2011, 47, 4718–4720. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with sepcial reference to the determination of surface area and porosity. Pure Appl. Chem. 1984, 57, 603–619. [Google Scholar]
- Meher, S.K.; Justin, P.; Rao, G.R. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim. Acta 2010, 55, 8388–8396. [Google Scholar] [CrossRef]
- Meher, S.K.; Justin, P.; Rao, G.R. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 2011, 3, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Chen, J.; Lou, X.W. Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J. Mater. Chem. 2010, 20, 7015–7020. [Google Scholar] [CrossRef]
- Wang, B.; Lu, X.; Tang, Y. Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 9689–9699. [Google Scholar] [CrossRef]
- Zheng, Y.; Qiao, L.; Tang, J.; Yang, Z.; Yue, H.; He, D. Electrochemically deposited interconnected porous Co3O4 nanoflakes as anodes with excellent rate capability for lithium ion batteries. RSC Adv. 2015, 5, 36117–36121. [Google Scholar] [CrossRef]
- Li, C.; Chen, T.; Xu, W.; Lou, X.; Pan, L.; Chen, Q.; Hu, B. Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, L.; Shang, Y.; Gao, J.; Li, J.; He, X. Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochim. Acta 2015, 151, 109–117. [Google Scholar] [CrossRef]
- Su, P.; Liao, S.; Rong, F.; Wang, F.; Chen, J.; Li, C.; Yang, Q. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; He, H.; Wang, J.; Zhou, W.; Abruña, H.D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 2015, 9, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Chen, L.; Liu, Y.; Zhu, G.; Wang, C.; Zhang, H.; Yang, G.; Ye, H.; Yuan, A. Co3O4 nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt-organic frameworks. CrystEngComm 2014, 16, 10227–10234. [Google Scholar] [CrossRef]
- Sun, H.Y.; Ahmad, M.; Zhu, J. Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode. Electrochim. Acta 2013, 89, 199–205. [Google Scholar] [CrossRef]
- Fang, D.; Li, L.; Xu, W.; Li, G.; Li, G.; Wang, N.; Luo, Z.; Xu, J.; Liu, L.; Huang, C.; et al. Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries. J. Mater. Chem. A 2013, 1, 13203–13208. [Google Scholar] [CrossRef]
- Zhao, X.; Pang, Z.; Wu, M.; Liu, X.; Zhang, H.; Ma, Y.; Sun, Z.; Zhang, L.; Chen, X. Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies. Mater. Res. Bull. 2013, 48, 92–95. [Google Scholar] [CrossRef]
- Su, D.; Xie, X.; Munroe, P.; Dou, S.; Wang, G. Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Ko, Y.; Park, J.; Kim, D. Origin of capacity fading in nano-sized Co3O4 electrdes: Electrochemical impedance spectroscopy study. Nanoscale Res. Lett. 2008, 3, 390–394. [Google Scholar] [CrossRef]
- Liu, Y.; Mi, C.; Su, L.; Zhang, X. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 2507–2513. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Sun, B.; Ao, Z.; Xie, X.; Wei, Y.; Wang, G. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for application in lithium ion batteries and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zhao, X.; Yang, M.; Ma, L.; Shen, X. Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials 2015, 5, 2335-2347. https://doi.org/10.3390/nano5042335
Sun S, Zhao X, Yang M, Ma L, Shen X. Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials. 2015; 5(4):2335-2347. https://doi.org/10.3390/nano5042335
Chicago/Turabian StyleSun, Shijiao, Xiangyu Zhao, Meng Yang, Liqun Ma, and Xiaodong Shen. 2015. "Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage" Nanomaterials 5, no. 4: 2335-2347. https://doi.org/10.3390/nano5042335
APA StyleSun, S., Zhao, X., Yang, M., Ma, L., & Shen, X. (2015). Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage. Nanomaterials, 5(4), 2335-2347. https://doi.org/10.3390/nano5042335