Plasmonic Spectral Splitting in Ring/Rod Metasurface
Abstract
:1. Introduction
2. Physical Module
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Giner-Casares, J.J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28. [Google Scholar] [CrossRef]
- Xie, T.; Jing, C.; Long, Y.-T. Single plasmonic nanoparticles as ultrasensitive sensors. Analyst 2017, 142, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Gobin, A.M.; Lee, M.H.; Halas, N.J.; James, W.D.; Drezek, R.A.; West, J.L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, R.; Kiguchi, M. Surface enhanced Raman scattering of a single molecular junction. Phys. Chem. Chem. Phys. 2015, 17, 21254–21260. [Google Scholar] [CrossRef] [PubMed]
- Kollatou, T.; Dimitriadis, A.; Assimonis, S.; Kantartzis, N.; Antonopoulos, C. Multi-band, highly absorbing, microwave metamaterial structures. Appl. Phys. A 2014, 115, 555–561. [Google Scholar] [CrossRef]
- Monti, A.; Toscano, A.; Bilotti, F. Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers. Opt. Lett. 2016, 41, 3383–3386. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Toscano, A.; Bilotti, F. Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens. J. Appl. Phys. 2017, 121, 243106. [Google Scholar] [CrossRef]
- Mulla, B.; Sabah, C. Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting. Plasmonics 2016, 11, 1313–1321. [Google Scholar] [CrossRef]
- Dayal, G.; Chin, X.Y.; Soci, C.; Singh, R. High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing. Adv. Opt. Mater. 2017, 5, 1600559. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, R. Toroidal versus Fano Resonances in High Q planar THz Metamaterials. Adv. Opt. Mater. 2016, 4, 2119–2125. [Google Scholar] [CrossRef]
- Verellen, N.; Van Dorpe, P.; Vercruysse, D.; Vandenbosch, G.A.; Moshchalkov, V.V. Dark and bright localized surface plasmons in nanocrosses. Opt. Express 2011, 19, 11034–11051. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhao, L.; Wang, C.; Yi, X.; Liu, Z.; Wang, G.; Li, J. Tunable Fano resonance in E-shape plasmonic nanocavities. J. Phys. Chem. C 2014, 118, 25124–25131. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Cui, L.; Yu, L.; Duan, G.; Zhao, Y.; Xiao, J. Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 2014, 10, 721–727. [Google Scholar] [CrossRef]
- Khan, A.D.; Khan, S.D.; Khan, R.; Ahmad, N.; Ali, A.; Khalil, A.; Khan, F.A. Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 2014, 9, 1091–1102. [Google Scholar] [CrossRef]
- Tamma, V.A.; Cui, Y.; Zhou, J.; Park, W. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers. Nanoscale 2013, 5, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-L.; Yogesh, N.; Chen, X.-D.; Chen, W.-J.; Dong, J.-W.; Ouyang, Z.; Wang, G.P. Full controlling of Fano resonances in metal-slit superlattice. Sci. Rep. 2015, 5, 18461. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-L.; Fu, T.; Ouyang, Z.; Wang, G.P. Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances. Appl. Phys. Lett. 2016, 108, 081109. [Google Scholar] [CrossRef]
- Deng, Z.L.; Li, X.; Fu, T.; Wang, G.P. Fano resonance in a metasurface composed of graphene ribbon superlattice. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Fang, Z.; Cai, J.; Yan, Z.; Nordlander, P.; Halas, N.J.; Zhu, X. Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 2011, 11, 4475–4479. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Khan, A.D. Polarization Selective Electromagnetic-Induced Transparency in the Disordered Plasmonic Quasicrystal Structure. J. Phys. Chem. C 2015, 119, 21633–21638. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-L.; Dong, J.-W. Lasing in plasmon-induced transparency nanocavity. Opt. Express 2013, 21, 20291–20302. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Cao, W.; Al-Naib, I.; Cong, L.; Withayachumnankul, W.; Zhang, W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett. 2014, 105, 171101. [Google Scholar] [CrossRef]
- Cong, L.; Manjappa, M.; Xu, N.; Al-Naib, I.; Zhang, W.; Singh, R. Fano resonances in terahertz metasurfaces: A figure of merit optimization. Adv. Opt. Mater. 2015, 3, 1537–1543. [Google Scholar] [CrossRef]
- Khan, A.D.; Miano, G. Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 2013, 8, 1429–1437. [Google Scholar] [CrossRef]
- Hu, Y.; Noelck, S.J.; Drezek, R.A. Symmetry Breaking in Gold− Silica− Gold Multilayer Nanoshells. ACS Nano 2010, 4, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Dayal, G.; Chin, X.Y.; Soci, C.; Singh, R. High-Q Whispering-Gallery-Mode-Based Plasmonic Fano Resonances in Coupled Metallic Metasurfaces at Near Infrared Frequencies. Adv. Opt. Mater. 2016, 4, 1295–1301. [Google Scholar] [CrossRef]
- Dayal, G.; Chin, X.Y.; Soci, C.; Singh, R. Independent Tailoring of Super-Radiant and Sub-Radiant Modes in High-Q Plasmonic Fano Resonant Metasurfaces. Adv. Opt. Mater. 2016, 4, 1860–1866. [Google Scholar] [CrossRef]
- Khan, A.D.; Khan, S.D.; Khan, R.U.; Ahmad, N. Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics 2014, 9, 461–475. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Y.; Zhang, Y.; Chen, W.; Lin, W. Sensitivity and tunability of heptamer clusters composed of asymmetric split nanorings. J. Phys. D Appl. Phys. 2015, 48, 275102. [Google Scholar] [CrossRef]
- Liu, S.-D.; Leong, E.S.P.; Li, G.-C.; Hou, Y.; Deng, J.; Teng, J.H.; Ong, H.C.; Lei, D.Y. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 2016, 10, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Binfeng, Y.; Hu, G.; Zhang, R.; Yiping, C. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J. Opt. 2016, 18, 055002. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, L.; Duan, G.; Zhao, Y.; Xiao, J. Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. J. Lightw. Technol. 2015, 33, 3250–3253. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, H.; Li, J.; Wang, C.; Li, C.; Dong, J. Generation and manipulation of ultrahigh order plasmon resonances in visible and near-infrared region. Opt. Express 2015, 23, 10836–10846. [Google Scholar] [CrossRef] [PubMed]
- Verellen, N.; Van Dorpe, P.; Huang, C.; Lodewijks, K.; Vandenbosch, G.A.; Lagae, L.; Moshchalkov, V.V. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011, 11, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Zhang, J.B.; Yu, Y.F.; Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 2012, 6, 5130–5137. [Google Scholar] [CrossRef] [PubMed]
- Habteyes, T.G.; Dhuey, S.; Cabrini, S.; Schuck, P.J.; Leone, S.R. Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett. 2011, 11, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Chen, L.; Xu, N.; Singh, L.; Cui, T.; Singh, R.; Zhu, Y.; Zhang, W. Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials. Adv. Opt. Mater. 2017, 5, 1600960. [Google Scholar] [CrossRef]
- Baquedano, E.; González, M.; Paniagua-Domínguez, R.; Sánchez-Gil, J.; Postigo, P. Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity. Opt. Express 2017, 25, 15967–15976. [Google Scholar] [CrossRef] [PubMed]
Rotation Angle (θ) | 300° | 315° | 330° | ||||||
---|---|---|---|---|---|---|---|---|---|
Fano Modes | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 |
Q-factor | 71 | 29 | 48 | 39 | 17 | 15 | 49 | 26 | 11 |
FoM | 33 | 17 | 16 | 13 | 11 | 7 | 14 | 11 | 6 |
S | 50 nm | 60 nm | 70 nm | 80 nm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fano Modes | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 |
Q-factor | 64 | 12 | 18 | 56 | 11 | 20 | 35 | 14 | 12 | 17 | 8 | 18 |
FoM | 32 | 6 | 10 | 35 | 7 | 12 | 24 | 9 | 7 | 13 | 6 | 11 |
Theta-shaped | T | 10 nm | 20 nm | 30 nm | 40 nm | |||||||||||
Fano Modes | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F3 | F2 | F3 | F4 | F1 | F2 | F3 | |
Q-factor | 25 | 16 | 113 | 17 | 44 | 20 | 19 | x | 45 | 19 | 35 | x | 8 | x | x | |
FoM | 12 | 8 | 77 | 7 | 16 | 11 | 10 | x | 10 | 7 | 5 | x | 5 | x | x | |
Q-shaped | T | 10 nm | 20 nm | 30 nm | 40 nm | |||||||||||
Fano Modes | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | |
Q-factor | 13 | 15 | 19 | 110 | 64 | 12 | 18 | 32 | 192 | 21 | 22 | 14 | 196 | 20 | 23 | |
FoM | 5 | 8 | 6 | 33 | 32 | 6 | 10 | 13 | 68 | 14 | 16 | 8 | 105 | 14 | 17 |
D | Theta-Shaped: Double Split | Q-Shaped:Single Split | Q-Shaped: Double Split | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp Fano Modes | 5 nm | 7 nm | 9 nm | 5 nm | 7 nm | 9 nm | 5 nm | 7 nm | 9 nm |
Q-factor | 111 | 113 | 111 | 117 | 117 | 117 | 80 | 81 | 79 |
FoM | 55 | 71 | 67 | 43 | 41 | 34 | 40 | 44 | 54 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, N.; Khan, A.D.; Deng, Z.-L.; Khan, K.; Yadav, A.; Liu, Q.; Ouyang, Z. Plasmonic Spectral Splitting in Ring/Rod Metasurface. Nanomaterials 2017, 7, 397. https://doi.org/10.3390/nano7110397
Muhammad N, Khan AD, Deng Z-L, Khan K, Yadav A, Liu Q, Ouyang Z. Plasmonic Spectral Splitting in Ring/Rod Metasurface. Nanomaterials. 2017; 7(11):397. https://doi.org/10.3390/nano7110397
Chicago/Turabian StyleMuhammad, Naseer, Adnan Daud Khan, Zi-Lan Deng, Karim Khan, Ashish Yadav, Qiang Liu, and Zhengbiao Ouyang. 2017. "Plasmonic Spectral Splitting in Ring/Rod Metasurface" Nanomaterials 7, no. 11: 397. https://doi.org/10.3390/nano7110397
APA StyleMuhammad, N., Khan, A. D., Deng, Z. -L., Khan, K., Yadav, A., Liu, Q., & Ouyang, Z. (2017). Plasmonic Spectral Splitting in Ring/Rod Metasurface. Nanomaterials, 7(11), 397. https://doi.org/10.3390/nano7110397