Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure
2.2. Optical Properties
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nicole, L.; Laberty-Robert, C.; Rozes, L.; Sanchez, C. Hybrid Materials Science: A Promised Land for the Integrative Design of Multifunctional Materials. Nanoscale 2014, 6, 6267–6292. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic-Inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Judeinstein, P.; Sanchez, C. Hybrid Organic-Inorganic Materials: A Land of Multidisciplinarity. J. Mater. Chem. 1996, 6, 511–525. [Google Scholar] [CrossRef]
- Parola, S.; Julián-López, B.; Carlos, L.D.; Sanchez, C. Optical Properties of Hybrid Organic-Inorganic Materials and Their Applications. Adv. Funct. Mater. 2016, 26, 6506–6544. [Google Scholar] [CrossRef]
- Park, S.K.; Kang, B.-K.; Shin, J.-W.; Joo, C.W.; Moon, J.; Cho, D.-H.; Yu, B.; Chu, H.Y.; Lee, J.-I. Triethylene Glycol-Titanium Oxide Hydrate Hybrid Films with High Refractive Index and Surface Evenness. J. Mater. Chem. C 2014, 2, 4468–4475. [Google Scholar] [CrossRef]
- Zhan, X.; Xing, Q.; Liu, H.; Zhang, J.; Cheng, J.; Lin, X. A Facile Method for Fabrication of Titanium-Doped Hybrid Materials with High Refractive Index. RSC Adv. 2014, 4, 13909–13918. [Google Scholar] [CrossRef]
- Jeong, S.; Moon, J. Fabrication of Inorganic-Organic Hybrid Films for Optical Waveguide. J. Non-Cryst. Solids 2005, 351, 3530–3535. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, W.-C. Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films. Chem. Mater. 2002, 14, 4242–4248. [Google Scholar] [CrossRef]
- Schottner, G. Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials. Chem. Mater. 2001, 13, 3422–3435. [Google Scholar] [CrossRef]
- Yamada, N.; Yoshinaga, I.; Katayama, S. Processing and Optical Properties of Patternable Inorganic-Organic Hybrid Films. J. Appl. Phys. 1999, 85, 2423–2427. [Google Scholar] [CrossRef]
- Philipp, G.; Schmidt, H. New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol-Gel Process. J. Non-Cryst. Solids 1984, 63, 283–292. [Google Scholar] [CrossRef]
- Wen, J.; Wilkes, G.L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chem. Mater. 1996, 8, 1667–1681. [Google Scholar] [CrossRef]
- Sanchez, C.; Ribot, F. Design of Hybrid Organic-Inorganic Materials Synthesized via Sol-Gel Chemistry. New J. Chem. 1994, 18, 1007–1047. [Google Scholar]
- Yamada, N.; Yoshinaga, I.; Katayama, S. Synthesis and Dynamic Mechanical Behaviour of Inorganic-Organic Hybrids Containing Various Inorganic Components. J. Mater. Chem. 1997, 7, 1491–1495. [Google Scholar] [CrossRef]
- Huang, H.H.; Orler, B.; Wilkes, G.L. Structure-property behaviour of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content and molecular weight of poly(dimethylsiloxane). Macromolecules 1987, 20, 1322–1330. [Google Scholar] [CrossRef]
- Lu, Q.; Mullins, M.E. In Situ Synthesis of High Refractive Index PDMS/Metal Oxide Nanocomposites. MRS Proc. 2012, 1400. [Google Scholar] [CrossRef]
- Yamada, N.; Yoshinaga, I.; Katayama, S. Formation Behavior and Optical Properties of Transparent Inorganic-Organic Hybrids Prepared from Metal Alkoxides and Polydimethylsiloxane. J. Sol-Gel Sci. Technol. 2000, 17, 123–130. [Google Scholar] [CrossRef]
- Wu, L.Y.L.; Tan, G.H.; Zeng, X.T.; Li, T.H.; Chen, Z. Synthesis and Characterization of Transparent Hydrophobic Sol-Gel Hard Coatings. J. Sol-Gel Sci. Technol. 2006, 38, 85–89. [Google Scholar] [CrossRef]
- Shindou, T.; Katayama, S.; Yamada, N.; Kamiya, K. Effect of Composition on Surface Properties of Polydimethylsiloxane-Based Inorganic/Organic Hybrid Films. J. Sol-Gel Sci. Technol. 2004, 30, 229–237. [Google Scholar] [CrossRef]
- Almeida, J.C.; Wacha, A.; Bóta, A.; Almásy, L.; Vaz Fernandes, M.H.; Margaça, F.M.A.; Miranda Salvado, I.M. PDMS-SiO2 Hybrid Materials—A New Insight into the Role of Ti and Zr as Additives. Polymer 2015, 72, 40–51. [Google Scholar] [CrossRef]
- Julián, B.; Gervais, C.; Rager, M.-N.; Maquet, J.; Cordoncillo, E.; Escribano, P.; Babonneau, F.; Sanchez, C. Solid-State 17O NMR Characterization of PDMS-MxOy (M = Ge(IV), Ti(IV), Zr(IV), Nb(V) and Ta(V)) Organic-Inorganic Nanocomposites. Chem. Mater. 2004, 16, 521–529. [Google Scholar] [CrossRef]
- Julián, B.; Gervais, C.; Cordoncillo, E.; Escribano, P.; Babonneau, F.; Sanchez, C. Synthesis and Characterization of Transparent PDMS-Metal-Oxo Based Organic-Inorganic Nanocomposites. Chem. Mater. 2003, 15, 3026–3034. [Google Scholar] [CrossRef]
- Alonso, B.; Sanchez, C. Structural Investigation of Polydimethylsiloxane-Vanadate Hybrid Materials. J. Mater. Chem. 2000, 10, 377–386. [Google Scholar] [CrossRef]
- Guermeur, C.; Lambard, J.; Gerard, J.-F.; Sanchez, C. Hybrid Polydimethylsiloxane-Zirconium Oxo Nanocomposites. Part 1 Characterization of the Matrix and the Siloxane-Zirconium Oxo Interface. J. Mater. Chem. 1999, 9, 769–778. [Google Scholar] [CrossRef]
- Babonneau, F. Hybrid Siloxane-Oxide Materials via Sol-Gel Processing: Structural Characterization. Polyhedron 1994, 13, 1123–1130. [Google Scholar] [CrossRef]
- Diré, S.; Babonneau, F.; Carturan, G.; Livage, J. Synthesis and Characterization of Siloxane-Titania Materials. J. Non-Cryst. Solids 1992, 147–148, 62–66. [Google Scholar] [CrossRef]
- Glaser, R.H.; Wilkes, G.L. Structure Property behaviour of polydimethylsiloxane and poly(tetramethylene oxide) modified TEOS based sol-gel materials. Polym. Bull. 1988, 19, 51–57. [Google Scholar] [CrossRef]
- Yamada, N.; Yoshinaga, I.; Katayama, S. Processing and Properties of Inorganic-Organic Hybrids Containing Various Inorganic Components. J. Sol-Gel Sci. Technol. 1998, 13, 445–449. [Google Scholar] [CrossRef]
- Almeida, J.C.; Castro, A.G.B.; Miranda Salvado, I.M.; Margaça, F.M.A.; Vaz Fernandes, M.H. A New Approach to the Preparation of PDMS-SiO2 Based Hybrids—A Structural Study. Mater. Lett. 2014, 128, 105–109. [Google Scholar] [CrossRef]
- Zeitler, V.A.; Brown, C.A. The Infrared Spectra of Some Ti–O–Si, Ti–O–Ti and Si–O–Si Compounds. J. Phys. Chem. 1957, 61, 1174–1177. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Kurasheva, N.A.; Lavrukhin, B.D.; Kuteinikova, L.I. The Condensation Reaction of Titanium Tetrabutoxide with α,ω-dihydroxypolydimethylsiloxanes. Polym. Sci. USSR 1972, 14, 2857–2865. [Google Scholar] [CrossRef]
- Hoebbel, D.; Nacken, M.; Schmidt, H.; Huch, V.; Veith, M. X-RAY and NMR Spectroscopic Characterisation of Cyclic Titanodiphenylsiloxanes and Examination of the Hydrolytic Stability of Their Si–O–Ti Bonds. J. Mater. Chem. 1998, 8, 171–178. [Google Scholar] [CrossRef]
- Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spanò, G.; Rivetti, F.; Zecchina, A. Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study. J. Am. Chem. Soc. 2001, 123, 11409–11419. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H.M. Raman, Mid-Infrared, Near-Infrared and Ultraviolet-Visible Spectroscopy of PDMS Silicone Rubber for Characterization of Polymer Optical Waveguide Materials. J. Mol. Struct. 2010, 976, 274–281. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, UK, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Xu, T.; Hou, W.; Shen, X.; Wu, H.; Li, X.; Wang, J.; Jiang, Z. Sulfonated Titania Submicrospheres-Doped Sulfonated Poly(Ether Ether Ketone) Hybrid Membranes with Enhanced Proton Conductivity and Reduced Methanol Permeability. J. Power Sources 2011, 196, 4934–4942. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: London, UK, 1991; ISBN 978-0-12-451160-6. [Google Scholar]
- Smith, A.L.; Anderson, D.R. Vibrational Spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3, (Me2SiO)3, (Me2SiO)4, (Me2SiO)x and Their Deuterated Analogs. Appl. Spectrosc. 1984, 38, 822–834. [Google Scholar] [CrossRef]
- Téllez, L.; Rubio, J.; Rubio, F.; Morales, E.; Oteo, J.L. FT-IR Study of the Hydrolysis and Polymerization of Tetraethyl Orthosilicate and Polydimethyl Siloxane in the Presence of Tetrabutyl Orthotitanate. Spectrosc. Lett. 2004, 37, 11–31. [Google Scholar] [CrossRef]
- Do, Y.-J.; Kim, J.-H.; Park, J.-H.; Park, S.-S.; Hong, S.-S.; Suh, C.-S.; Lee, G.-D. Photocatalytic Decomposition of 4-Nitrophenol on Ti-Containing MCM-41. Catal. Today 2005, 101, 299–305. [Google Scholar] [CrossRef]
- Chang, H.; Huang, P.J. Thermo-Raman Studies on Anatase and Rutile. J. Raman Spectrosc. 1998, 29, 97–102. [Google Scholar] [CrossRef]
- Xiong, M.; Zhou, S.; Wu, L.; Wang, B.; Yang, L. Sol-Gel Derived Organic-Inorganic Hybrid from Trialkoxysilane-Capped Acrylic Resin and Titania: Effects of Preparation Conditions on the Structure and Properties. Polymer 2004, 45, 8127–8138. [Google Scholar] [CrossRef]
- Beaucage, G.; Ulibarri, T.A.; Black, E.P.; Schaefer, D.W. Multiple Size Scale Structures in Silica-Siloxane Composites Studied by Small-Angle Scattering. ACS Symp. Ser. 1995, 585, 97–111. [Google Scholar] [CrossRef]
- Bansal, P.P.; Ardell, A.J. Average Nearest-Neighbor Distances between Uniformly Distributed Finite Particles. Metallography 1972, 5, 97–111. [Google Scholar] [CrossRef]
- Yano, S.; Iwata, K.; Kurita, K. Physical Properties and Structure of Organic-Inorganic Hybrid Materials Produced by Sol-Gel Process. Mater. Sci. Eng. C 1998, 6, 75–90. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Slonimski, G.L.; Zhdanov, A.A.; Godovski, Y.K.; Moskalenko, V.A. Some Physical Properties of Polyorganosiloxanes. I. Linear Polyorganosiloxanes. J. Polym. Sci. Part A Polym. Chem. 1972, 10, 1–22. [Google Scholar] [CrossRef]
- Maeda, S.; Fujita, M.; Idota, N.; Matsukawa, K.; Sugahara, Y. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices Via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl. Mater. Interfaces 2016, 8, 34762–34769. [Google Scholar] [CrossRef] [PubMed]
- Elim, H.I.; Cai, B.; Kurata, Y.; Sugihara, O.; Kaino, T.; Adschiri, T.; Chu, A.-L.; Kambe, N. Refractive Index Control and Rayleigh Scattering Properties of Transparent TiO2 Nanohybrid Polymer. J. Phys. Chem. B 2009, 113, 10143–10148. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J.; Benicewicz, B.C.; Siegel, R.W.; Schadler, L.S. TiO2 Nanocomposites with High Refractive Index and Transparency. J. Mater. Chem. 2011, 21, 18623–18629. [Google Scholar] [CrossRef]
- Nussbaumer, R.J.; Caseri, W.R.; Smith, P.; Tervoort, T. Polymer-TiO2 Nanocomposites: A Route towards Visually Transparent Broadband UV Filters and High Refractive Index Materials. Macromol. Mater. Eng. 2003, 288, 44–49. [Google Scholar] [CrossRef]
- Lü, C.; Cui, Z.; Guan, C.; Guan, J.; Yang, B.; Shen, J. Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index. Macromol. Mater. Eng. 2003, 288, 717–723. [Google Scholar] [CrossRef]
- Zimmermann, L.; Weibel, M.; Caseri, W.; Suter, U.W.; Walther, P. Polymer Nanocomposites with “Ultralow” Refractive Index. Polym. Adv. Technol. 1993, 4, 1–7. [Google Scholar] [CrossRef]
- Szabó, D.V.; Hanemann, T. Polymer nanocomposites for optical applications. In Advances in Polymer Nanocomposites: Types and Applications; Gao, F., Ed.; Woodhead: Cambridge, UK, 2012; pp. 567–604. ISBN 978-1-84569-940-6. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, W.-C. High-Refractive-Index Thin Films Prepared from Aminoalkoxysilane-Capped Pyromellitic Dianhydride-Titania Hybrid Materials. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3419–3427. [Google Scholar] [CrossRef]
- Ohtani, B.; Ogawa, Y.; Nishimoto, S.-I. Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997, 101, 3746–3752. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Kozlov, D.A.; Kolesnik, I.V.; Poluboyarinov, A.S.; Becerikli, A.E.; Grünert, W.; Garshev, A.V. The Amorphous Phase in Titania and Its Influence on Photocatalytic Properties. Appl. Catal. B 2016, 195, 39–47. [Google Scholar] [CrossRef]
- Kohjiya, S.; Maeda, K.; Yamashita, S.; Shibata, Y. Chemical Modification of Silicone Elastomers for Optics. J. Mater. Sci. 1990, 25, 3368–3374. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, G.; Liang, X.; Zhang, W.; Zhou, L.; He, B.; Song, P.; Yuan, X.; Zhang, C.; Zhang, L.; et al. Thermally Stable Transparent Sol-Gel Based Active Siloxane-Oligomer Materials with Tunable High Refractive Index and Dual Reactive Groups. RSC Adv. 2016, 6, 70825–70831. [Google Scholar] [CrossRef]
- Kataoka, T.; Ueda, S. Viscosity-Molecular Weight Relationship for Polydimethylsiloxane. J. Polym. Sci. Part C Polym. Lett. 1966, 4, 317–322. [Google Scholar] [CrossRef]
- Levchenko, A.A.; Li, G.; Boerio-Goates, J.; Woodfield, B.F.; Navrotsky, A. TiO2 Stability Landscape: Polymorphism, Surface Energy and Bound Water Energetics. Chem. Mater. 2006, 18, 6324–6332. [Google Scholar] [CrossRef]
- David, G.; Pérez, J. Combined Sampler Robot and High-Performance Liquid Chromatography: A Fully Automated System for Biological Small-Angle X-ray Scattering Experiments at the Synchrotron SOLEIL SWING Beamline. J. Appl. Crystallogr. 2009, 42, 892–900. [Google Scholar] [CrossRef]
- Girardot, R.; Viguier, G.; Pérez, J.; Ounsy, M. FOXTROT: A JAVA-Based Application to Reduce and Analyze SAXS and WAXS Piles of 2D Data at Synchrotron SOLEIL. In Proceedings of the 8th canSAS Meeting, Tokai, Japan, 14–16 April 2015. [Google Scholar]
- Kim, J.-S.; Yang, S.; Bae, B.-S. Thermally Stable Transparent Sol-Gel Based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation. Chem. Mater. 2010, 22, 3549–3555. [Google Scholar] [CrossRef]
- Tabor, C.E.; Kajzar, F.; Kaino, T.; Koike, Y.; Hosseinzadeh, A.; Middlebrook, C.T.; Mullins, M.E. Optical Waveguides Using PDMS-Metal Oxide Hybrid Nanocomposites. Proc. SPIE 2015, 9360, 93600P. [Google Scholar] [CrossRef]
Assignment | Wavenumber (cm−1) | Sample | Reference | |
---|---|---|---|---|
FTIR | Raman | |||
Si–O–Si (stretch) | n/a | 495 | All | [22,23,34] |
Ti–O–Ti | <700 | n/a | Ti-PDMS | [35,36] |
Si–CH3 (rock) | 660–700 | 690 | All | [23,34,37,38] |
Si–C and CH3 (rock) | 790 | 790 | All | [22,23,34,37] |
CH3 (rock) | 860 | 860 | All | [22,23,34,37,38,39] |
Si–OH | 890 | − | PDMS-OH | [37,39] |
Ti–O–Si | 920–960 | See text | Ti-PDMS | [22,30,31,35,40] |
Si–O–Si (stretch) | 1010 and 1080 | n/a | All | [22,23,34,35,37,38,39] |
Si–CH3 | 1260 | 1260 | All | [22,35,37,38,39] |
CH3 (bend) | 1410 and 1440 | 1410 | All | [22,23,34,35,37,38,39] |
CH3 (stretch) | 2900 and 2960 | − | All | [22,23,34,35,37,38,39] |
OH | 3000–3600 | − | PDMS-OH | [35,37,39] |
PDMS-OH | TIP/PDMS-OH (mol. Ratio) | qhalo a (Å−1) | d b (Å) | qmax c (Å−1) | ζ d (Å) | D e | CA f (°) |
---|---|---|---|---|---|---|---|
25 cSt (M ≈ 2100) | 2:1 | 0.841 | 7.47 | 0.085 | 73.92 | 1.4 | 112 |
5:1 | 0.843 | 7.45 | 0.127 | 49.47 | 2.6 | 102 | |
10:1 | 0.858 | 7.32 | 0.190 | 33.07 | 2.8 | 95 | |
15:1 | 0.862 | 7.29 | 0.308 | 20.40 | 2.8 | 93 | |
20:1 | 0.867 | 7.25 | 0.321 | 19.57 | 2.8 | 91 | |
65 cSt (M ≈ 4000) | 2:1 | 0.840 | 7.48 | 0.091 | 69.05 | 1.9 | 110 |
5:1 | 0.842 | 7.46 | 0.100 | 62.83 | 1.2 | 108 | |
10:1 | 0.845 | 7.44 | 0.106 | 59.28 | 1.4 | 99 | |
15:1 | 0.848 | 7.41 | 0.143 | 43.94 | 3.5 | 96 | |
20:1 | 0.845 | 7.44 | 0.151 | 41.61 | 3.0 | 96 | |
750 cSt (M ≈ 20000) | 2:1 | 0.840 | 7.48 | 0.052 | 120.83 | 2.0 | 126 |
5:1 | 0.840 | 7.48 | 0.066 | 95.20 | 2.0 | 114 | |
10:1 | 0.840 | 7.48 | 0.055 | 114.24 | 2.7 | 113 | |
15:1 | 0.841 | 7.47 | – | – | 2.1 | 112 | |
20:1 | 0.843 | 7.45 | 0.010 g | 628.32 g | 2.7 | 110 |
PDMS-OH | TIP/PDMS-OH (mol. Ratio) | TiO2 (wt. %) | TiO2 (vol. %) | Ti/Si (mol. Ratio) |
---|---|---|---|---|
25 cSt (M ≈ 2100) | 2:1 | 7.0 | 1.8 | 0.07 |
5:1 | 15.9 | 4.4 | 0.18 | |
10:1 | 27.4 | 8.4 | 0.36 | |
15:1 | 36.1 | 12.1 | 0.54 | |
20:1 | 43.0 | 15.5 | 0.71 | |
65 cSt (M ≈ 4000) | 2:1 | 3.9 | 1.0 | 0.04 |
5:1 | 9.2 | 2.5 | 0.09 | |
10:1 | 16.8 | 4.8 | 0.19 | |
15:1 | 23.3 | 7.0 | 0.28 | |
20:1 | 28.8 | 9.2 | 0.38 | |
750 cSt (M ≈ 20000) | 2:1 | 0.8 | 0.2 | 0.01 |
5:1 | 2.0 | 0.5 | 0.02 | |
10:1 | 3.9 | 1.0 | 0.04 | |
15:1 | 5.8 | 1.5 | 0.06 | |
20:1 | 7.6 | 2.0 | 0.08 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalod, A.R.M.; Grendal, O.G.; Blichfeld, A.B.; Furtula, V.; Pérez, J.; Henriksen, L.; Grande, T.; Einarsrud, M.-A. Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis. Nanomaterials 2017, 7, 460. https://doi.org/10.3390/nano7120460
Dalod ARM, Grendal OG, Blichfeld AB, Furtula V, Pérez J, Henriksen L, Grande T, Einarsrud M-A. Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis. Nanomaterials. 2017; 7(12):460. https://doi.org/10.3390/nano7120460
Chicago/Turabian StyleDalod, Antoine R. M., Ola G. Grendal, Anders B. Blichfeld, Vedran Furtula, Javier Pérez, Lars Henriksen, Tor Grande, and Mari-Ann Einarsrud. 2017. "Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis" Nanomaterials 7, no. 12: 460. https://doi.org/10.3390/nano7120460
APA StyleDalod, A. R. M., Grendal, O. G., Blichfeld, A. B., Furtula, V., Pérez, J., Henriksen, L., Grande, T., & Einarsrud, M.-A. (2017). Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis. Nanomaterials, 7(12), 460. https://doi.org/10.3390/nano7120460