Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis and Spectral Characterization of Adsorption-Shell
4.2.1. General Synthesis Procedure of the New Thioureides
4.2.2. Synthesis and Characterization of Core@Shell Nanostructure
4.2.3. Fabrication of Coverslips Coated with Core@Shell@Adsorption-Shell Nanostructure
4.3. Microbial Strains Used for Antimicrobial Activity Assay
4.4. Microbiological Assay Investigation Procedure—Microbial Adherence to the Coated Slide Specimens
4.5. Biocompatibility
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krysan, D.J. The unmet clinical need of novel antifungal drugs. Virulence 2017, 8, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Chandra, J. Candida biofilm resistance. Drug. Resist. Updates 2004, 7, 301–399. [Google Scholar] [CrossRef] [PubMed]
- Holban, A.M.; Saviuc, C.; Grumezescu, A.M.; Chifiriuc, M.C.; Banu, O.; Lazar, V. Phenotypic investigation of virulence profiles in some Candida spp. strains isolated from different clinical specimens. Lett. Appl. NanoBioSci. 2012, 1, 72–76. [Google Scholar]
- Mukherjee, P.K.; Chandra, J.; Kuhn, D.M.; Ghannoum, M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003, 71, 4333–4340. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K. Current status of HIV/AIDS in the ART era. J. Infect. Chemother. 2017, 23, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Mihaiescu, D.E.; Horja, M.; Gheorghe, I.; Ficai, A.; Grumezescu, A.M.; Bleotu, C.; Chifiriuc, M.C. Water soluble magnetite nanoparticles for antimicrobial drugs delivery. Lett. Appl. NanoBioSci. 2012, 1, 45–49. [Google Scholar]
- Grumezescu, A.M.; Holban, A.M.; Andronescu, E.; Ficai, A.; Bleotu, C.; Chifiriuc, M.C. Water dispersible metal oxide nanobiocomposite as a potentiator of the antimicrobial activity of kanamycin. Lett. Appl. NanoBioSci. 2012, 1, 77–82. [Google Scholar]
- Bielenica, A.; Stefańska, J.; Stępień, K.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Sanna, G.; Boi, S.; Giliberti, G.; Wrzosek, M.; Struga, M. Synthesis, cytotoxicity and antimicrobial activity of thiourea derivatives incorporating 3-(trifluoromethyl)phenyl moiety. Eur. J. Med. Chem. 2015, 101, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, H.; Liu, W.; Xu, C. Design, synthesis and antifungal activity of novel thioureas containing 1,3,4-thiadiazole and thioether skeleton. Chem. Res. Chin. Univ. 2016, 32, 615–620. [Google Scholar] [CrossRef]
- Tatar, E.; Karakuş, S.; Küçükgüzel, Ș.G.; Okullu, S.Ö.; Ünübol, N.; Kocagöz, T.; De Clercq, E.; Andrei, G.; Snoeck, R.; Pannecouque, C.; et al. Design, synthesis, and molecular docking studies of a conjugated thiadiazole–thiourea scaffold as antituberculosis agents. Biol. Pharm. Bull. 2016, 39, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Katla, V.R.; Syed, R.; Golla, M.; Shaik, A.; Chamarthi, N.R. Synthesis and biological evaluation of novel urea and thiourea derivatives of valaciclovir. J. Serb. Chem. Soc. 2014, 79, 283–289. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Elaasser, M.M.; Nissan, Y.M. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: Synthesis, biological evaluation and molecular docking. Chem. Cent. J. 2017, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Maizatul, A.I.; Mohd, S.M.Y.; Nakisah, M.A. Anti-amoebic properties of carbonyl thiourea derivatives. Molecules 2014, 19, 5191–5204. [Google Scholar]
- Siddiqui, N.; Alam, M.S.; Sahu, M.; Naim, M.J.; Yar, M.S.; Alam, O. Design, synthesis, anticonvulsant evaluation and docking study of 2-[(6-substituted benzo[d]thiazol-2-ylcarbamoyl)methyl]-1-(4-substituted phenyl)isothioureas. Bioorg. Chem. 2017, 71, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Larik, F.A.; Channar, P.A.; Ismail, H.; Dilshad, E.; Mirza, B. New 1-octanoyl-3-aryl thiourea derivatives: Solvent-free synthesis, characterization and multi-target biological activities. Bangladesh J. Pharmacol. 2016, 11, 894–902. [Google Scholar]
- Shoaib, M.; Ullah, S.; Ayaz, M.; Tahir, M.N.; Shah, S.W.A. Synthesis, characterization, crystal structures, analgesic and antioxidant activities of thiourea derivatives. J. Chem. Soc. Pak. 2016, 38, 479–486. [Google Scholar]
- Moneer, A.A.; Mohammed, K.O.; El-Nassan, H.B. Synthesis of novel substituted thiourea and benzimidazole derivatives containing a pyrazolonering as anti-inflammatory agents. Chem. Biol. Drug Des. 2016, 87, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Thakar, K.M.; Paghdar, D.J.; Chovatia, P.T.; Joshi, H.S. Synthesis of thiourea derivatives bearing the benzo[b] thiophene nucleus as potential antimicrobial agents. J. Serb. Chem. Soc. 2005, 70, 807–815. [Google Scholar] [CrossRef]
- Kachhadia, V.V.; Patel, M.R.; Joshi, H.S. Heterocyclic systems containing S/N regioselective nucleophilic competition: Facile synthesis, antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinone containing the benzo[b]thiophene moiety. J. Serb. Chem. Soc. 2005, 70, 153–161. [Google Scholar] [CrossRef]
- Pandeya, S.N.; Chattree, A.; Fatima, I. Synthesis, antimicrobial activity and structure activity relationship of aryl thioureas and 1,2,4-thiadiayoles. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 1589–1593. [Google Scholar]
- Madhava, G.; Venkata Subbaiah, K.; Sreenivasulu, S.; Naga Raju, C. Synthesis of novel urea and thiourea derivatives of diphenylphosphoramidate and their antimicrobial activity. Pharm. Lett. 2012, 4, 1194–1201. [Google Scholar]
- Mohamed, N.A.; El-Ghany, N.A.A. Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives. Int. J. Biol. Macromol. 2012, 50, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Saviuc, C.; Grumezescu, A.M.; Holban, A.; Chifiriuc, C.; Mihaiescu, D.; Lazar, V. Hybrid nanostructurated material for biomedical applications. Biointerface Res. Appl. Chem. 2011, 1, 64. [Google Scholar]
- Grumezescu, A.M.; Chifiriuc, M.C.; Saviuc, C.; Grumezescu, V.; Hristu, R.; Mihaiescu, D. Stanciu, G.A.; Andronescu E. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil. IEEE. Trans. NanoBioSci. 2012, 11, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Andronescu, E.; Grumezescu, A.M.; Ficai, A.; Gheorghe, I.; Chifiriuc, M.; Mihaiescu, D.E.; Lazar, V. In vitroefficacy of antibiotic magnetic dextran microspheres complexes against Staphylococcus aureus and Pseudomonas aeruginosa strains. Biointerface Res. Appl. Chem. 2012, 2, 332–338. [Google Scholar]
- Holban, A.M.; Grumezescu, A.M.; Ficai, A.; Chifiriuc, M.C.; Lazar, V.; Radulescu, R. Fe3O4@C18-carvoneto prevent Candidatropicalis biofilm development. Roman. J. Mater. 2013, 43, 300–305. [Google Scholar]
- Seneviratne, C.J.; Jin, L.; Samaranayake, L.P. Biofilm lifestyle of Candida: A mini review. Oral Dis. 2008, 14, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Mukherjee, P.K.; Leidich, S.D.; Faddoul, F.F.; Hoyer, L.L.; Douglas, L.J.; Ghannoum, M.A. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J. Dent. Res. 2001, 80, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.P.; Douglas, L.J. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 1996, 39, 2128–2131. [Google Scholar] [CrossRef]
- Timsit, J.; Dubois, Y.; Minet, C.; Bonadona, A.; Lugosi, M.; Ara-Somohano, C.; Hamidfar, R.; Schwebel, R. New materials and devices for preventing biofilm associated infections. Ann. Intensive Care 2011, 1, 34. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.P.; Douglas, L.J. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 1994, 62, 915–921. [Google Scholar] [PubMed]
- Limban, C.; Balotescu Chifiriuc, M.C.; Missir, A.V.; Chiriţă, I.C.; Bleotu, C. Antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl)benzoic acid. Molecules 2008, 13, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Yang, C.H.; Huang, K.S.; Vasile, B.S.; Voicu, G.; Mihaiescu, D.E.; Bleotu, C. Magnetic nanofluid with antitumoral properties. Lett. Appl. NanoBioSci. 2012, 1, 56–60. [Google Scholar]
- Limban, C.; Missir, A.V.; Nuță, D.C. Synthesis of some new 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl) benzamides as potential antifungal agents. Farmacia 2016, 64, 775–779. [Google Scholar]
- Marinas, I.; Grumezescu, A.M.; Saviuc, C.; Chifiriuc, C.; Mihaiescu, D.; Lazar, V. Rosmarinus officinalis essential oil as antibiotic potentiator against Staphylococcus aureus. Biointerface Res. Appl. Chem. 2012, 2, 271–276. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limban, C.; Missir, A.V.; Caproiu, M.T.; Grumezescu, A.M.; Chifiriuc, M.C.; Bleotu, C.; Marutescu, L.; Papacocea, M.T.; Nuta, D.C. Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials 2018, 8, 47. https://doi.org/10.3390/nano8010047
Limban C, Missir AV, Caproiu MT, Grumezescu AM, Chifiriuc MC, Bleotu C, Marutescu L, Papacocea MT, Nuta DC. Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials. 2018; 8(1):47. https://doi.org/10.3390/nano8010047
Chicago/Turabian StyleLimban, Carmen, Alexandru Vasile Missir, Miron Teodor Caproiu, Alexandru Mihai Grumezescu, Mariana Carmen Chifiriuc, Coralia Bleotu, Luminita Marutescu, Marius Toma Papacocea, and Diana Camelia Nuta. 2018. "Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies" Nanomaterials 8, no. 1: 47. https://doi.org/10.3390/nano8010047
APA StyleLimban, C., Missir, A. V., Caproiu, M. T., Grumezescu, A. M., Chifiriuc, M. C., Bleotu, C., Marutescu, L., Papacocea, M. T., & Nuta, D. C. (2018). Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials, 8(1), 47. https://doi.org/10.3390/nano8010047