Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD and DRS Analysis
2.2. Morphological Characteristics of ZnTaO2N Photo-Anodes
2.3. XPS Investigation of the CoPi/ZnTaO2N Photoanodes
2.4. Photoelectrochemical (PEC) Properties of the ZnTaO2N Photoanodes
2.5. Band Positions of the ZnTaO2N Photoanodes
2.6. Quantification of Dioxygen Evolution during Photoactivation
3. Experimental
3.1. Preparation of the ZnTaO2N Catalyst
3.2. Fabrication of the ZnTaO2N Photoanodes
3.3. Photoelectrochemical Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.; Zhang, S.; Abe, T.; Komura, M.; Iyoda, T.; Nagai, K. Weak visible light (~mw/cm2) organophotocatalysis for mineralization of amine, thiol and aldehyde by biphasic cobalt phthalocyanine/fullerene nanocomposites prepared by wet process. Appl. Catal. B Environ. 2016, 193, 240–247. [Google Scholar] [CrossRef]
- Bockris, J. Energy: The Solar-Hydrogen Alternative; Halsted Press: New York, NY, USA, 1975; p. 381. [Google Scholar]
- Osterloh, F.E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, Q.; Wang, G.; Yan, K. Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. J. Alloys Compd. 2017, 711, 514–520. [Google Scholar] [CrossRef]
- Sun, M.; Fang, Y.; Kong, Y.; Yuan, X.; Shi, J.; Umar, A. Direct in situ synthesis of Fe2O3-codoped n-doped TiO2 nanoparticles with enhanced photocatalytic and photo-electrochemical properties. J. Alloys Compd. 2017, 705, 89–97. [Google Scholar] [CrossRef]
- Sun, W.; Wang, D.; Rahman, Z.U.; Wei, N.; Chen, S. 3D hierarchical WO3 grown on TiO2 nanotube arrays and their photoelectrochemical performance for water splitting. J. Alloys Compd. 2017, 695, 2154–2159. [Google Scholar] [CrossRef]
- Watanabe, T.; Fujishima, A.; Honda, K.-I. Photoelectrochemical reactions at SrTiO3 single crystal electrode. Bull. Chem. Soc. Jpn. 1976, 49, 355–358. [Google Scholar] [CrossRef]
- Kudo, A. Development of photocatalyst materials for water splitting. Int. J. Hydrogen Energy 2006, 31, 197–202. [Google Scholar] [CrossRef]
- Melián, E.P.; López, C.R.; Méndez, A.O.; Díaz, O.G.; Suárez, M.N.; Rodríguez, J.D.; Navío, J.; Hevia, D.F. Hydrogen production using Pt-loaded TiO2 photocatalysts. Int. J. Hydrogen Energy 2013, 38, 11737–11748. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, X.; Liu, L.; Jiang, X.; Lv, J.; Li, Z.; Zou, Z. Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int. J. Hydrogen Energy 2008, 33, 5941–5946. [Google Scholar] [CrossRef]
- Hu, Y.-S.; Kleiman-Shwarsctein, A.; Stucky, G.D.; McFarland, E.W. Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 2009, 19, 2652–2654. [Google Scholar] [CrossRef] [PubMed]
- Amano, F.; Li, D.; Ohtani, B. Fabrication and photoelectrochemical property of tungsten (VI) oxide films with a flake-wall structure. Chem. Commun. 2010, 46, 2769–2771. [Google Scholar] [CrossRef] [PubMed]
- Sayama, K.; Nomura, A.; Zou, Z.; Abe, R.; Abe, Y.; Arakawa, H. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 2003, 2908–2909. [Google Scholar] [CrossRef]
- Scaife, D. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 1980, 25, 41–54. [Google Scholar] [CrossRef]
- Abe, R.; Takata, T.; Sugihara, H.; Domen, K. The use of TiCl4 treatment to enhance the photocurrent in a TaON photoelectrode under visible light irradiation. Chem. Lett. 2005, 34, 1162–1163. [Google Scholar] [CrossRef]
- Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A. The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J. Catal. 2008, 259, 133–137. [Google Scholar] [CrossRef]
- Si, W.; Pergolesi, D.; Haydous, F.; Fluri, A.; Wokaun, A.; Lippert, T. Investigating the behavior of various cocatalysts on LaTaON2 photoanode for visible light water splitting. Phys. Chem. Chem. Phys. 2017, 19, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; LaTempa, T.J.; Basham, J.I.; Mor, G.K.; Varghese, O.K.; Grimes, C.A. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 2010, 10, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Raphael, B.; Maeda, K.; Le Gendre, L.; Abe, R.; Kubota, J.; Domen, K. Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light. Thin Solid Films 2010, 518, 5855–5859. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Lee, Y.; Domen, K. Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chem. Phys. Lett. 2008, 457, 134–136. [Google Scholar] [CrossRef]
- Siritanaratkul, B.; Maeda, K.; Hisatomi, T.; Domen, K. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. ChemSusChem 2011, 4, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.; Higashi, M.; Domen, K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 2010, 132, 11828–11829. [Google Scholar] [CrossRef] [PubMed]
- Urabe, H.; Hisatomi, T.; Minegishi, T.; Kubota, J.; Domen, K. Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss. 2015, 176, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C. ZnTaO2N: Stabilized high-temperature LiNbO3-type structure. J. Am. Chem. Soc. 2016, 138, 15950–15955. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Katayama, C.; Moriya, Y.; Minegishi, T.; Katayama, M.; Nishiyama, H.; Yamada, T.; Domen, K. Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ. Sci. 2013, 6, 3595–3599. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Y.; Feng, J.; Fang, T.; Zhong, Y.; Li, Z.; Zou, Z. Photoelectrochemical water oxidation of LaTaON2 under visible-light irradiation. Int. J. Hydrogen Energy 2014, 39, 7697–7704. [Google Scholar] [CrossRef]
- Landsmann, S.; Maegli, A.E.; Trottmann, M.; Battaglia, C.; Weidenkaff, A.; Pokrant, S. Design guidelines for high-performance particle-based photoanodes for water splitting: Lanthanum titanium oxynitride as a model. ChemSusChem 2015, 8, 3451–3458. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.; Al-Mayouf, A.; Ghanem, M.A.; Shaddad, M.N.; Weller, M.T. Photoelectrochemical oxidation of water using La(Ta,Nb)O2N modified electrodes. Int. J. Hydrogen Energy 2016, 41, 11644–11652. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. Angew. Chem. Int. Ed. 2012, 51, 9865–9869. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Liu, B.; Li, X.; Cao, M. Facile synthesis of SrNbO2 n nanoparticles with excellent visible-light photocatalytic performances. Mater. Lett. 2015, 152, 131–134. [Google Scholar] [CrossRef]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Arunachalam, P.; Ghanem, M.A.; Al-Mayouf, A.M.; Al-shalwi, M. Enhanced electrocatalytic performance of mesoporous nickel-cobalt oxide electrode for methanol oxidation in alkaline solution. Mater. Lett. 2017, 196, 365–368. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Al-Mayouf, A.M.; Arunachalam, P.; Abiti, T. Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media. Electrochim. Acta 2016, 207, 177–186. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Thiagarajan, K.; Senthilkumar, B.; Khan, Z.; Senthil, R.A.; Arunachalam, P.; Madhavan, J.; Ashokkumar, M. Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. Chem. Select. 2017, 2, 201–210. [Google Scholar] [CrossRef]
- Ai, G.; Mo, R.; Li, H.; Zhong, J. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 2015, 7, 6722–6728. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.J.; Jang, J.W.; Kong, K.J.; Kang, H.J.; Kim, J.Y.; Jun, H.; Parmar, K.; Lee, J.S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed. 2012, 51, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Shaddad, M.N.; Ghanem, M.A.; Al-Mayouf, A.M.; Gimenez, S.; Bisquert, J.; Herraiz-Cardona, I. Cooperative catalytic effect of ZrO2 and α-Fe2O3 nanoparticles on BiVO4 photoanodes for enhanced photoelectrochemical water splitting. ChemSusChem 2016, 9, 2779–2783. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285–4292. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.; Wen, L.; Wu, W.; Yuan, R.; Wang, X.; Wu, L. A TaON nano-photocatalyst with low surface reduction defects for effective mineralization of chlorophenols under visible light irradiation. Phys. Chem. Chem. Phys. 2013, 15, 12742–12747. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, Y.; Li, H.; Cui, X.; Lin, Y. Annealing-free synthesis of carbonaceous Nb2O5 microspheres by flame thermal method and enhanced photocatalytic activity for hydrogen evolution. Mater. Res. Bull. 2015, 66, 51–58. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Xiao, D. A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J. Mater. Chem. A 2014, 2, 18420–18427. [Google Scholar] [CrossRef]
- Pilli, S.K.; Furtak, T.E.; Brown, L.D.; Deutsch, T.G.; Turner, J.A.; Herring, A.M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028–5034. [Google Scholar] [CrossRef]
- McAlpin, J.G.; Surendranath, Y.; Dinca, M.; Stich, T.A.; Stoian, S.A.; Casey, W.H.; Nocera, D.G.; Britt, R.D. EPR evidence for Co (IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 2010, 132, 6882–6883. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Ginley, D. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 1978, 125, 228–232. [Google Scholar] [CrossRef]
- Rooke, J.; Weller, M. Synthesis and characterisation of perovskite-type oxynitrides. Sol. State Phenom. 2003, 90, 417–422. [Google Scholar] [CrossRef]
Electrophoretic Deposited Oxynitrides on ITO | Particle Size (nm) [a] | Band Gap Eg (eV) [b] |
---|---|---|
TaON | 29.5 | 2.95 |
ZnTaO2N | 22.7 | 2.75 |
CoPi/ZnTaO2N | 22.4 | 2.7, 2.47 |
LaTa0.3Nb0.7O2N [32] | 18 | 1.84 |
LaNbO2N | 40 | 1.65 |
Photoanode | Rs/Ω | Rct/Ω | CPE1 (F) | |
---|---|---|---|---|
ZnTaO2N | Dark | 22.17 | 33.55 | 6.763 × 10−5 |
Light | 22.17 | 27.23 | 5.714 × 10−5 | |
CoPi/ZnTaO2N | Dark | 19.17 | 25.81 | 1.15 × 10−4 |
Light | 19.17 | 22.46 | 2.303 × 10−5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunachalam, P.; Shaddad, M.N.; Ghanem, M.A.; Al-Mayouf, A.M.; Weller, M.T. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water. Nanomaterials 2018, 8, 48. https://doi.org/10.3390/nano8010048
Arunachalam P, Shaddad MN, Ghanem MA, Al-Mayouf AM, Weller MT. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water. Nanomaterials. 2018; 8(1):48. https://doi.org/10.3390/nano8010048
Chicago/Turabian StyleArunachalam, Prabhakarn, Maged N. Shaddad, Mohamed A. Ghanem, Abdullah M. Al-Mayouf, and Mark T. Weller. 2018. "Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water" Nanomaterials 8, no. 1: 48. https://doi.org/10.3390/nano8010048
APA StyleArunachalam, P., Shaddad, M. N., Ghanem, M. A., Al-Mayouf, A. M., & Weller, M. T. (2018). Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water. Nanomaterials, 8(1), 48. https://doi.org/10.3390/nano8010048