Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krivetskiy, V.V.; Rumyantseva, M.N.; Gaskov, A.M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russ. Chem. Rev. 2013, 82, 917–941. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Vorobyeva, N.A.; Rumyantseva, M.N.; Gaskov, A.M. Active sites on the surface of nanocrystalline semiconductor oxides ZnO and SnO2 and gas sensitivity. Russ. Chem. Bull. 2017, 66, 1728–1764. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Li, T.; Zeng, W.; Wang, Z. Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: A review. Sens. Actuators B 2015, 221, 1570–1585. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Gaskov, A.M.; Samoylov, A.M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorg. Mater. 2016, 52, 1311–1338. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens. Actuators B 2018, 259, 269–281. [Google Scholar] [CrossRef]
- Xu, F.; Lv, H.-F.; Wu, S.-Y.; Ho, H.-P. Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles. Sens. Actuators B 2018, 259, 709–716. [Google Scholar] [CrossRef]
- Yamazoe, N.; Kurokawa, Y.; Seiyama, T. Effects of additives on semiconductor gas sensors. Sens. Actuators B 1983, 4, 283–289. [Google Scholar] [CrossRef]
- Mizsei, J.; Lantto, V. Air pollution monitoring with a semiconductor gas sensor array system. Sens. Actuators B 1992, 6, 223–227. [Google Scholar] [CrossRef]
- Zhang, J.; Colbow, K. Surface silver clusters as oxidation catalysts on semiconductor gas sensors. Sens. Actuators B 1997, 40, 47–52. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsunaga, N.; Hyodo, T.; Egashira, M. Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens. Actuators B 2001, 77, 35–40. [Google Scholar] [CrossRef]
- Mehta, A.; Singh, V. Structural, electrical and gas–sensing properties of In2O3:Ag composite nanoparticle layers. PRAMANA J. Phys. 2005, 65, 949–958. [Google Scholar] [CrossRef]
- Gong, J.; Chen, Q.; Lian, M.; Liu, N.; Stevenson, R.G.; Adami, F. Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators B 2006, 114, 32–39. [Google Scholar] [CrossRef]
- Singh, V.N.; Mehta, B.R.; Joshi, R.K.; Kruis, F.E.; Shivaprasad, S.M. Enhanced gas sensing properties of In2O3:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects. Sens. Actuators B 2007, 125, 482–488. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.; Zhang, Y.; Xu, J.; Xu, P.; Pan, Q.; Yu, W. Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuators B 2010, 143, 635–640. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K.; Gulina, L.B.; Tolstoy, V.P. Gas sensing properties of SnO2 thin films modified by Ag nanoclusters synthesized by SILD method. World Acad. Sci. Eng. Technol. 2011, 5, 183–186. [Google Scholar]
- Chavan, D.N.; Patil, G.E.; Kajale, D.D.; Gaikwad, V.B.; Khanna, P.K.; Jain, G.H. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor. J. Sensors 2011, 2011, 824215. [Google Scholar] [CrossRef]
- Chen, D.; Yin, L.; Ge, L.; Fan, B.; Zhang, R.; Sun, J.; Shaom, G. Low-temperature and highly selective NO-sensing performance of WO3 nanoplates decorated with silver nanoparticles. Sens. Actuators B 2013, 185, 445–455. [Google Scholar] [CrossRef]
- Satheeshkumar, E.; Yang, J. Preparation and characterization of silver film coated ZnO nanowires gas sensors based on infrared surface enhancement effect in detection of VOCs. RSC Adv. 2014, 4, 19331–19337. [Google Scholar] [CrossRef]
- Mizraei, A.; Janghorban, K.; Hashemi, B.; Bonavita, A.; Bonyani, M.; Leonardi, S.G.; Neri, G. Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 2015, 5, 737–749. [Google Scholar] [CrossRef]
- Bai, S.; Liu, H.; Sun, J.; Tian, Y.; Luo, R.; Li, D.; Chen, A. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification. RSC Adv. 2015, 5, 48619–48625. [Google Scholar] [CrossRef]
- Zhu, Z.; Chang, J.L.; Wu, C.H.; Chou, T.L.; Wu, R.J. Promotion effect of silver on indium(III) oxide for detecting trace amounts of ozone. Sens. Actuators B 2016, 232, 442–447. [Google Scholar] [CrossRef]
- Xiao, B.; Song, S.; Wang, P.; Zhao, Q.; Chuai, M.; Zhang, M. Promoting effects of Ag on In2O3 nanospheres of sub-ppb NO2 detection. Sens. Actuators B 2017, 241, 489–497. [Google Scholar] [CrossRef]
- Anand, K.; Kaur, J.; Singh, R.C.; Thangaraj, R. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor. Chem. Phys. Lett. 2017, 682, 140–146. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Z.; Si, Y.; Liu, X.; Zhou, X.; Yang, J.; Hu, P.; Han, N.; Yang, J.; Chen, Y. Ag-modified In2O3 manoparticles for highly sensitive and selective ethanol alarming sensors. Sensors 2017, 17, 2220. [Google Scholar] [CrossRef] [PubMed]
- Subha, P.P.; Hasna, K.; Jayaraj, M.K. Surface modification of TiO2 nanorod arrays by Ag nanoparticles and its enhanced room temperature ethanol sensing properties. Mater. Res. Express 2017, 4, 105037. [Google Scholar] [CrossRef]
- Molavi, R.; Sheikhi, M.H. Low temperature carbon monoxide gas sensor based on Ag-Co3O4 thick film nanocomposite. Mater. Lett. 2018, 23, 74–77. [Google Scholar] [CrossRef]
- Fang, F.; Bai, L.; Song, D.; Yang, H.; Sun, X.; Sun, H.; Zhu, J. Ag-modified In2O3/ZnO nanobundles with high formaldehyde gas-sensing performance. Sensors 2015, 15, 20086–20096. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Liu, X.; Han, B.; Deng, S.; Xiao, X.; Wang, Y. Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B 2016, 224, 193–200. [Google Scholar] [CrossRef]
- Rong, Q.; Zhang, Y.; Wang, C.; Zhu, Z.; Zhang, J.; Liu, Q. A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers. Sci. Rep. 2017, 7, 12110. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.R.; Martínez-Preciado, A.H.; López-Mena, E.R.; Zuñiga, A.E.; Cayetano-Castro, N.; Ceballos-Sanchez, O. Improvement of the gas sensing response of nanostructured LaCoO3 by the addition of Ag nanoparticles. Sens. Actuators B 2017, 246, 181–189. [Google Scholar] [CrossRef]
- Wei, W.; Guo, S.; Chen, C.; Sun, L.; Chen, Y.; Guo, W.; Ruan, S. High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers. J. Alloys Compd. 2017, 695, 1122–1127. [Google Scholar] [CrossRef]
- Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; et al. Cobalt location in p-CoOx/n-SnO2 nanocomposites: Correlation with gas sensor performances. J. Alloys Compd. 2017, 721, 249–260. [Google Scholar] [CrossRef]
- Mao, C.F.; Vannice, M.A. Formaldehyde oxidation over Ag catalysts. J. Catal. 1995, 154, 230–244. [Google Scholar] [CrossRef]
- Shen, B.; Fan, K.; Wang, W.; Deng, J. Ab initio study of the adsorption and oxidation of HCHO with Ag cluster. J. Mol. Struct. (Theochem.) 1999, 469, 157–161. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Konstantinova, E.A.; Shatalova, T.B.; Gaskov, A.M. Active sites on nanocrystalline tin dioxide surface: Effect of palladium and ruthenium oxides clusters. J. Phys. Chem. C 2014, 118, 21541–21549. [Google Scholar] [CrossRef]
- Available online: https://srdata.nist.gov/xps/XPSDetailPage.aspx?AllDataNo=28608 (accessed on 7 October 2018).
- Yadav, K.; Mehta, B.R.; Lakshmi, K.V.; Bhattacharya, S.; Singh, J.P. Tuning the Wettability of Indium Oxide Nanowires from Superhydrophobic to Nearly Superhydrophilic: Effect of Oxygen-Related Defects. J. Phys. Chem. C 2015, 119, 16026–16032. [Google Scholar] [CrossRef]
- Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 2004, 126, 62–63. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Photoinduced surface reactions on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater. 2000, 12, 3–5. [Google Scholar] [CrossRef]
- Stevens, N.; Priest, C.I.; Sedev, R.; Ralston, J. Wettability of photoresponsive titanium dioxide surfaces. Langmuir 2003, 19, 3272–3275. [Google Scholar] [CrossRef]
- Lim, H.S.; Kwak, D.; Lee, D.Y.; Lee, S.G.; Cho, K. UV-driven reversible switching of a rose like vanadium oxide film between superhydrophobicity and superhydrophilicity. J. Am. Chem. Soc. 2007, 129, 4128–4129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Sh.; Feng, X.; Yao, J.; Jiang, L. Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew. Chem. Int. Ed. 2006, 45, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Siedl, N.; Guegel, P.; Diwald, O. First Combined Electron Paramagnetic Resonance and FT-IR Spectroscopic Evidence for Reversible O2 Adsorption on In2O3−x Nanoparticles. J. Phys. Chem. C 2013, 117, 20722–20729. [Google Scholar] [CrossRef]
- Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K. Optical and photoelectrical properties of nanocrystalline indium oxide with small grains. Thin Solid Films 2015, 595, 25–31. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Kolobova, E.; Pestryakov, A.; Shemeryankina, A.; Kotolevich, Y.; Martynyuk, O.; Tiznado Vazquez, H.J.; Bogdanchikova, N. Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel 2014, 138, 65–71. [Google Scholar] [CrossRef]
- Koziej, D.; Barsan, N.; Shimanoe, K.; Yamazoe, N.; Szuber, J.; Weimar, U. Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sens. Actuators B 2006, 118, 98–104. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Yashina, L.V.; Gaskov, A.M. Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO2. J. Solid State Chem. 2010, 183, 2389–2399. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Gaskov, A.M. Specific interaction of PdOx- and RuOy-modified tin dioxide with CO and NH3 gases: Kelvin probe and DRIFT studies. J. Phys. Chem. C 2015, 119, 24342–24350. [Google Scholar] [CrossRef]
- Alammar, T.; Mudring, A.V. Facile preparation of Ag/ZnO nanoparticles via photoreduction. J. Mater. Sci. 2009, 44, 3218–3222. [Google Scholar] [CrossRef]
Sample | dXRD (In2O3), nm | dEM, nm | Ssurf, m2/g | ||
---|---|---|---|---|---|
In2O3 | Ag | ||||
In2O3 | 10 ± 1 | 5–15 (a) | - | 88 ± 5 | - |
In2O3-UV | - | - | |||
In2O3/Ag-imp | 5–34 (a) | 4.5 ± 0.4 (c) | |||
In2O3/Ag-UV | 1000–3000 (b) | 1.5 ± 0.3 (d) |
Sample | Hydrogen Cnsumption, mol H2 per 1 mol In2O3 | Tmax, °C | ||
---|---|---|---|---|
Total | at 25–370 °C | at 370–850 °C | ||
In2O3 | 4.0 ± 0.5 | 0.5 ± 0.1 | 3.5 ± 0.5 | 590 |
In2O3-UV | 3.6 ± 0.5 | 0.4 ± 0.1 | 3.2 ± 0.5 | 530 |
In2O3/Ag-imp | 3.9 ± 0.5 | 0.5 ± 0.1 | 3.4 ± 0.5 | 600 |
In2O3/Ag-UV | 3.5 ± 0.5 | 0.6 ± 0.1 | 2.9 ± 0.5 | 550 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors. Nanomaterials 2018, 8, 801. https://doi.org/10.3390/nano8100801
Naberezhnyi D, Rumyantseva M, Filatova D, Batuk M, Hadermann J, Baranchikov A, Khmelevsky N, Aksenenko A, Konstantinova E, Gaskov A. Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors. Nanomaterials. 2018; 8(10):801. https://doi.org/10.3390/nano8100801
Chicago/Turabian StyleNaberezhnyi, Daniil, Marina Rumyantseva, Darya Filatova, Maria Batuk, Joke Hadermann, Alexander Baranchikov, Nikolay Khmelevsky, Anatoly Aksenenko, Elizaveta Konstantinova, and Alexander Gaskov. 2018. "Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors" Nanomaterials 8, no. 10: 801. https://doi.org/10.3390/nano8100801
APA StyleNaberezhnyi, D., Rumyantseva, M., Filatova, D., Batuk, M., Hadermann, J., Baranchikov, A., Khmelevsky, N., Aksenenko, A., Konstantinova, E., & Gaskov, A. (2018). Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors. Nanomaterials, 8(10), 801. https://doi.org/10.3390/nano8100801