Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Printed Layers
2.3. Characterization
3. Results and Discussion
3.1. Experimental Determination of Conductivity Threshold
3.2. Classical Percolation Theory
3.3. Comparison with Other Approaches
3.4. Flexibility Tests
4. Conclusions
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References
- Secor, E.B.; Ahn, B.Y.; Gao, T.Z.; Lewis, J.A.; Hersam, M.C. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 2015, 27, 6683–6688. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Chang, T.H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.W.; et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, W.; Jiang, Z.; Yu, D. Low temperature sintering nano-silver conductive ink printed on cotton fabric as printed electronics. Prog. Org. Coat. 2016, 101, 604–611. [Google Scholar] [CrossRef]
- Adhikari, K.K.; Jung, Y.; Park, H.; Cho, G.; Kim, N.-Y. Silver-nanoparticle-based screen-printing and film characterization of a disposable, dual-band, bandstop filter on a flexible polyethylene terephthalate substrate. J. Nanomater. 2015, 16, 395. [Google Scholar] [CrossRef]
- Maddipatla, D.; Narakathu, B.B.; Avuthu, S.G.R.; Emamian, S.; Eshkeiti, A.; Chlaihawi, A.A.; Bazuin, B.J.; Joyce, M.K.; Joyce, C.W.; Atashbar, M.Z. A novel flexographic printed strain gauge on paper platform. IEEE Sens. 2015, 1–4. [Google Scholar]
- Homenick, C.M.; James, R.; Lopinski, G.P.; Dunford, J.; Sun, J.; Park, H.; Jung, Y.; Cho, G.; Malenfant, P.R.L. Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces 2016, 8, 27900–27910. [Google Scholar] [CrossRef] [PubMed]
- Kamyshny, A.; Magdassi, S. Conductive nanomaterials for printed electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef] [PubMed]
- Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Sou, A.; Gili, E.; Sirringhaus, H. Inkjet-printed resistors with a wide resistance range for printed read-only memory applications. Org. Electron. 2013, 14, 699–702. [Google Scholar] [CrossRef]
- Jeschke, D.; Niemann, M.; Krüger, K. In-situ blending of inkjet-printed thick-film resistors. Addit. Conf. (Device Packag. HiTEC, HiTEN, CICMT) 2013, 2013, 000211–000220. [Google Scholar] [CrossRef]
- Lau, P.H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.G.; Finn, D.; Harvey, A.; Hallam, T.; Coleman, J.N. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 2016, 109, 023107. [Google Scholar] [CrossRef]
- Subramanian, V.; Chang, J.; Liao, F. Printed organic chemical sensors and sensor systems. In Applications of Organic and Printed Electronics; Springer: Boston, MA, USA, 2013; pp. 157–177. [Google Scholar]
- Hayat, A.; Marty, J.; Hayat, A.; Marty, J.L. Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens. Bioelectron. 2017, 89, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Creran, B.; Li, X.; Duncan, B.; Kim, C.S.; Moyano, D.F.; Rotello, V.M. Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl. Mater. Interfaces 2014, 6, 19525–19530. [Google Scholar] [CrossRef] [PubMed]
- Jarczewska, M.; Sheelam, S.R.; Ziółkowski, R.; Górski, Ł. A label-free electrochemical DNA aptasensor for the detection of dopamine. J. Electrochem. Soc. 2016, 163, B26–B31. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; González-Cortés, A.; Yánez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for sensitive determination of TGF β1 in urine. Procedia Technol. 2017, 27, 81–84. [Google Scholar] [CrossRef]
- Pasha, S.K.; Kaushik, A.; Vasudev, A.; Snipes, S.A.; Bhansali, S. Electrochemical immunosensing of saliva cortisol. J. Electrochem. Soc. 2013, 161, B3077–B3082. [Google Scholar] [CrossRef]
- Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 2015, 74, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-omari, M.; Liu, G.; Mueller, A.; Mock, A.; Ghosh, R.N.; Smith, K.; Kaya, T. A portable optical human sweat sensor. J. Appl. Phys. 2014, 116, 183102. [Google Scholar] [CrossRef]
- Pepłowski, A.; Janczak, D.; Ziółkowski, R.; Malinowska, E.; Jakubowska, M. Graphene nanoplatelets for screen-printed nonenzymatic voltammetric H2O2 sensors. Sens. Lett. 2017, 15, 779–784. [Google Scholar]
- Janczak, D.; Peplowski, A.; Wroblewski, G.; Gorski, L.; Zwierkowska, E.; Jakubowska, M. Investigations of printed flexible pH sensing materials based on graphene platelets and submicron RuO2 powders. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Wu, X.; Qi, S.; He, J.; Duan, G. High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites. J. Mater. Sci. 2010, 5, 483–489. [Google Scholar] [CrossRef]
- Dow Corning Corporation, 3140 RTV Coating Datasheet, 2014. Available online: www.farnell.com/datasheets/2014359.pdf (accessed on 19 September 2018).
- Poco Graphite Inc., Properties and Characteristics of Graphite, 2015. Available online: http://poco.com/Portals/0/Literature/Semiconductor/IND-109441-0115.pdf (accessed on 2 October 2018).
- Stauffer, D.; Aharony, A. Introduction to percolation theory, 2rd ed.; Taylor & Francis: London, UK, 2014. [Google Scholar]
- Fang, X.-Y.; Yu, X.-X.; Zheng, H.-M.; Jin, H.-B.; Wang, L.; Cao, M.-S. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 2015, 379, 2245–2251. [Google Scholar] [CrossRef]
- Graphene nano-platelets - world-leading graphene company - XG sciences. Available online: https://xgsciences.com/materials/graphene-nano-platelets/ (accessed on 23 August 2018).
- Romanenko, A.I.; Anikeeva, O.B.; Kuznetsov, V.L.; Obrastsov, A.N.; Volkov, A.P.; Garshev, A.V. Quasi-two-dimensional conductivity and magnetoconductivity of graphite-like nanosize crystallites. Solid State Commun. 2006, 137, 625–629. [Google Scholar] [CrossRef]
- Balberg, I.; Anderson, C.H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933–3943. [Google Scholar] [CrossRef]
- Lu, W.; Lin, H.; Wu, D.; Chen, G. Unsaturated polyester resin/graphite nanosheet conducting composites with a low percolation threshold. Polymer (Guildf) 2006, 47, 4440–4444. [Google Scholar] [CrossRef]
- Charlaix, E. Percolation threshold of a random array of discs: a numerical simulation. J. Phys. A. Math. Gen. 1986, 19, L533–L536. [Google Scholar] [CrossRef]
- Celzard, A.; McRae, E.; Deleuze, C.; Dufort, M.; Furdin, G.; Marêché, J.F. Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 1996, 53, 6209–6214. [Google Scholar] [CrossRef]
- Ruschau, G.R.; Yoshikawa, S.; Newnham, R.E. Resistivities of conductive composites. J. Appl. Phys. 1992, 72, 953–959. [Google Scholar] [CrossRef]
- Helsing, J.; Helte, A. Effective conductivity of aggregates of anisotropic grains. J. Appl. Phys. 1991, 69, 3583–3588. [Google Scholar] [CrossRef]
- Ruschau, G.R.; Newnham, R.E. Critical volume fractions in conductive composites. J. Compos. Mater. 1992, 26, 2727–2735. [Google Scholar] [CrossRef]
Sample – GNP Content (wt%) | RS (Ω/sq) |
---|---|
GNP-5% | 7.27 × 105 ÷ 2.1 × 1012 |
GNP-7% | 7.27 × 105 ÷ 2.1 × 1012 |
GNP-8% | 7.27 × 105 ÷ 2.1 × 1012 |
GNP-9% | 1.7 × 104 ± 1.1 × 104 |
GNP-10% | 8.1 × 103 ± 5.1 × 103 |
GNP-15% | 287 ± 69 |
GNP-20% | 101 ± 41 |
GNP-25% | 47 ± 12 |
GNP-30% | 28.6 ± 9.0 |
GNP-35% | 36.3 ± 6.3 |
GNP-37.5% | 11.9 ± 0.4 |
GNP-40% | 7.2 ± 0.6 |
GNP-45% | 6.2 ± 0.9 |
GNP-50% | 6.1 ± 1.2 |
GNP-52.5% | 8.9 ± 2.1 |
GNP-55% | 10.5 ± 1.4 |
a | b | c | d | f | t |
---|---|---|---|---|---|
2.328524 | 0.127924 | 0.154164 | 21.55641 | 0.358685 | 0.158932 |
4.51 | 0.167 | 0.123 |
Bending | angle (°) | 0 | 90 | 180 | ||
R (kΩ) | 43.9 | 36.9 | 37.3 | |||
Stretching | elongation (%) | 0 | 4.5 | 9 | 13.5 | |
R (kΩ) | 43.9 | 68 | 307 | 1.6 × 104 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepłowski, A.; Walter, P.A.; Janczak, D.; Górecka, Ż.; Święszkowski, W.; Jakubowska, M. Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature. Nanomaterials 2018, 8, 829. https://doi.org/10.3390/nano8100829
Pepłowski A, Walter PA, Janczak D, Górecka Ż, Święszkowski W, Jakubowska M. Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature. Nanomaterials. 2018; 8(10):829. https://doi.org/10.3390/nano8100829
Chicago/Turabian StylePepłowski, Andrzej, Piotr A. Walter, Daniel Janczak, Żaneta Górecka, Wojciech Święszkowski, and Małgorzata Jakubowska. 2018. "Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature" Nanomaterials 8, no. 10: 829. https://doi.org/10.3390/nano8100829
APA StylePepłowski, A., Walter, P. A., Janczak, D., Górecka, Ż., Święszkowski, W., & Jakubowska, M. (2018). Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature. Nanomaterials, 8(10), 829. https://doi.org/10.3390/nano8100829