Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Heterogeneous Catalyst (Chitosan-MgO Hybrid Nanocomposite)
2.2. Reactions of 2-{1-[4-((4-Methylphenyl)sulfonamide)phenyl]ethylidine}thiosemicarbazide (1) with α-Keto Hydrazonoyl Chlorides 2a–j or N-Aryl Arenecarbohydrazonoyl Halides 5a–d
2.2.1. Method A
2.2.2. Method B
3. Results and Discussion
3.1. Preparation and Characterization of Chitosan-MgO Nanocomposite Films
3.1.1. FTIR Spectra
3.1.2. FESEM Analysis
3.2. Optimal Catalyst Loading
3.3. Synthesis of Thiazoles and [1,3,4]thiadiazoles Using Cs-MgO Nanocomposite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Babaie, M.; Sheibani, H. Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction. Arab. J. Chem. 2011, 4, 159–162. [Google Scholar] [CrossRef]
- Kumar, D.; Reddy, V.B.; Mishra, B.G.; Rana, R.K.; Nadagouda, M.N.; Varma, R.S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron 2007, 63, 3093–3097. [Google Scholar] [CrossRef]
- Mirzaei, H.; Davoodnia, A. Microwave Assisted Sol-Gel Synthesis of MgO Nanoparticles and Their Catalytic Activity in the Synthesis of Hantzsch 1,4-Dihydropyridines. Chin. J. Catal. 2012, 33, 1502–1507. [Google Scholar] [CrossRef]
- Al-Matar, H.M.; Khalil, K.D.; Meier, H.; Kolshorn, H.; Elnagdi, M.H. Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methylene Moieties and phenols. Arkivoc 2008, 288–301. [Google Scholar] [CrossRef]
- Khalil, K.D.; Al-Matar, H.M.; Elnagdi, M.H. Chitosan as eco-friendly heterogeneous catalyst in Michael type additions: Simple and efficient route to pyridones and phthalazines. Eur. J Chem. 2010, 1, 252–258. [Google Scholar] [CrossRef]
- Khalil, K.D.; Al-Matar, H.M. Chitosan based heterogeneous catalyses: 4-Vinylpyridine grafted chitosan as catalyses for Michael additions and alkylpyridazinyl carbonitrile oxidation. Molecules 2013, 18, 5288–5305. [Google Scholar] [CrossRef] [PubMed]
- Pramod, K.S.; Praveen, K.S.; Sushil, K.G.; Dau, D.A. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res. 2014, 53, 2085–2091. [Google Scholar] [CrossRef]
- Sanuja, S.; Agalya, A.; Umapathy, M.J. Studies on Magnesium Oxide Reinforced Chitosan Bionanocomposite Incorporated with Clove Oil for Active Food Packaging Application. Int. J. Polym. Mater. Biopolym. Mater. 2014, 63, 733–740. [Google Scholar] [CrossRef]
- Basumallick, S.; Santra, S. Chitosan coated copper-oxide nano particles: A novel electro-catalyst for CO2 reduction. RSC Adv. 2014, 4, 63685–63690. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniece, V.; Nikolajeva, V. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides. Eur. J. Med. Chem. 2013, 70, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Djukicm, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; et al. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact. 2018, 286, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. [1,3,4]Thiadiazole: Synthesis, reactions, and applications in medicinal, agriculture, and materials chemistry. Chem. Rev. 2014, 114, 5572–5610. [Google Scholar] [CrossRef] [PubMed]
- Riyadh, S.M.; El-Motairi, S.A.; Ahmed, H.E.A.; Khalil, K.D.; Habib, E.E. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem. Biodiver. 2018, 15, e1800231. [Google Scholar] [CrossRef] [PubMed]
- Abbas, E.M.H.; Gomha, S.M.; Farghaly, T.A.; Abdalla, M.M. Synthesis of New Thiazole Derivatives as Antitumor Agents. Curr. Org. Synth. 2016, 13, 456–465. [Google Scholar] [CrossRef]
- Al-Bogami, A.S.; Saleh, T.S.; Mekky, A.E.M.; Shaaban, M.R. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building Blocks. J. Mol. Struct. 2016, 1121, 167–179. [Google Scholar] [CrossRef]
- Eweiss, N.F.; Osman, A. Synthesis of Heterocycles Part II. New Routes to Acetylthiadiazolines and Alkylazothiazoles. J. Heterocycl. Chem. 1980, 17, 1713–1717. [Google Scholar] [CrossRef]
- Mosselhi, M.A.N.; Abdallah, M.A.; Mohamed, Y.F.; Shawali, A.S. Synthesis and Tautomeric Structure of 7-Arylhydrazono-7H-[1,2,4]Triazolo[3,4-b][1,3,4]Thiadiazines. Phosphorous Sulfur Silicon 2002, 177, 487–496. [Google Scholar] [CrossRef]
- Laude, B.; Soufiaoui, M.; Arriau, J. Cycloadditions dipolaires-1,3 II. Addition des diarylnitrilimines au N-methylindole. Etude experimentale et essai d’interpretation. J. Heterocycl. Chem. 1977, 14, 1183–1190. [Google Scholar] [CrossRef]
- Wolkoff, P. A New Method of Preparing Hydrazonyl Halides. Can. J. Chem. 1975, 53, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
- El Kadib, A.; Primo, A.; Molvinger, K.; Boumina, M.; Brunel, D. Nanosized vanadium, tungsten, and molybdenium oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation. Chem. A Eur. J. 2011, 17, 7940–7946. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.R.; Bahekar, S.P.; Agrawal, A.R.; Sarode, P.B.; Chandak, H.S. Cascade Michael-Aldol reaction: Efficient annulation of sulfonamide chalcones into novel cyclohexenones under solvent-free conditions. Arkivoc 2016, 227–245. [Google Scholar] [CrossRef]
- De Oliveira Cardoso, M.V.; de Siqueira, L.R.P.; de Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; de Cruz, L.F.; Moreira, D.R.M.; Pereira, V.R.A.; et al. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2014, 86, 48–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostom, S.A.F.; Faidallah, H.M.; Radwan, M.F.; Badr, M.H. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014, 76, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Geies, A.A.; Kamal-Eldeen, A.M.; Abdelhafez, A.A.; Gaber, A.M. Synthesis of some thiazolo[3,2-a]pyrimidines. Phosphorous Sulfur Silicon Relat. Elem. 1991, 56, 87–93. [Google Scholar] [CrossRef]
- Ranu, B.C.; Banerjee, S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles. Org. Lett. 2005, 7, 3049–3052. [Google Scholar] [CrossRef] [PubMed]
State of Catalyst | Fresh Catalyst | Recycled (1) | Recycled (2) | Recycled (3) | Recycled (4) |
---|---|---|---|---|---|
Product 4a (%Yield) | 85 | 84 | 83 | 83 | 82 |
Compound Number | Ar2 | Time (min) | Yield (%) | |
---|---|---|---|---|
Et3N | Chitosan-MgO Nanocomposite | |||
4a | C6H5 | 30 | 76 | 85 |
4b | 2-CH3C6H4 | 30 | 73 | 85 |
4c | 2-ClC6H4 | 35 | 77 | 86 |
4d | 3-CH3C6H4 | 30 | 82 | 96 |
4e | 4-CH3C6H4 | 30 | 78 | 87 |
4f | 4-CH3OC6H4 | 40 | 73 | 83 |
4g | 4-NO2C6H4 | 40 | 69 | 81 |
4h | 4-BrC6H4 | 40 | 70 | 81 |
4i | 4-FC6H4 | 40 | 71 | 80 |
4j | 4-CH3COC6H4 | 40 | 72 | 84 |
Compound Number | Ar2 | Ar3 | Time (min) | Yield (%) | |
---|---|---|---|---|---|
Et3N | Chitosan/MgO Nanocomposite | ||||
8a | C6H5 | C6H5 | 30 | 74 | 86 |
8b | C6H5 | 4-NO2C6H4 | 35 | 76 | 88 |
8c | 4-CH3C6H4 | C6H5 | 40 | 79 | 85 |
8d | 4-CH3OC6H4 | C6H5 | 40 | 78 | 87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riyadh, S.M.; Khalil, K.D.; Aljuhani, A. Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles. Nanomaterials 2018, 8, 928. https://doi.org/10.3390/nano8110928
Riyadh SM, Khalil KD, Aljuhani A. Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles. Nanomaterials. 2018; 8(11):928. https://doi.org/10.3390/nano8110928
Chicago/Turabian StyleRiyadh, Sayed M., Khaled D. Khalil, and Ateyatallah Aljuhani. 2018. "Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles" Nanomaterials 8, no. 11: 928. https://doi.org/10.3390/nano8110928