Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges
Abstract
:1. Introduction
2. Techniques of Liquid-Phase Exfoliation
2.1. Sonication
2.2. High-Shear Mixing
2.3. Microfluidization
3. Media of Liquid-Phase Exfoliation
3.1. Organic Solvent
3.2. Ionic Liquids
3.3. Water/Surfactant
3.4. Water/Polymers
3.5. Direct Exfoliation in Pure Water
3.6. New Type of Green Dispersants
4. Devices of Liquid-Phase Exfoliation
4.1. Taylor-Couette Flow Reactor
4.2. Rotor-Stator Mixer
4.3. Rotating-Blade Mixer
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.Z.; Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. J. Mater. Sci. 2008, 43, 5092–5101. [Google Scholar] [CrossRef]
- Miao, J.; Chen, S.; Liu, H.; Zhang, X. Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chem. Eng. J. 2018, 345, 260–270. [Google Scholar] [CrossRef]
- Tan, R.K.L.; Reeves, S.P.; Hashemi, N.; Thomas, D.G.; Kavak, E.; Montazami, R.; Hashemi, N.N. Graphene as a flexible electrode: Review of fabrication approaches. J. Mater. Chem. A 2017, 5, 17777–17803. [Google Scholar] [CrossRef]
- Xu, M.; Qi, J.; Li, F.; Zhang, Y. Transparent and flexible tactile sensors based on graphene films designed for smart panels. J. Mater. Sci. 2018, 53, 9589–9597. [Google Scholar] [CrossRef]
- Li, X.; Zhi, L. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189–3216. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, H.; Li, H.; Peng, H. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Adv. Mater. 2013, 25, 5153–5176. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Lee, T. Quantitative correlation between interlayer distance and shear rate in liquid-based exfoliation of graphene layers. Carbon 2018, 129, 661–666. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z. Fluid dynamics: An emerging route for the scalable production of graphene in the last five years. RSC Adv. 2016, 6, 72525–72536. [Google Scholar] [CrossRef]
- Buzaglo, M.; Ruse, E.; Levy, I.; Nadiv, R.; Reuveni, G.; Shtein, M.; Regev, O. Top-Down, Scalable Graphene Sheets Production: It Is All about the Precipitate. Chem. Mater. 2017, 29, 9998–10006. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yang, J.; Chhowalla, M.; Loh, K.P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 2017, 46, 7306–7316. [Google Scholar] [CrossRef] [PubMed]
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, F.; Kubouchi, M.; Arao, Y. Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation. J. Mater. Sci. 2018, 53, 12807–12815. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Li, J.; Yi, M.; Zhang, X.; Ma, S. Preparation of graphene by jet cavitation. Nanotechnology 2011, 22, 365306. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, P.G.; Hodge, S.A.; Lombardi, L.; Tomarchio, F.; Decorde, N.; Milana, S.; Goykhman, I.; Su, Y.; Mesite, S.V.; Johnstone, D.N.; et al. Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. ACS Nano 2017, 11, 2742–2755. [Google Scholar] [CrossRef] [PubMed]
- Phiri, J.; Gane, P.; Maloney, T.C. High-concentration shear-exfoliated colloidal dispersion of surfactant-polymer-stabilized few-layer graphene sheets. J. Mater. Sci. 2017, 52, 8321–8337. [Google Scholar] [CrossRef]
- Chen, X.; Dobson, J.F.; Raston, C.L. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 2012, 48, 3703–3705. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J. Scalable exfoliation and dispersion of two-dimensional materials—An update. Phys. Chem. Chem. Phys. 2017, 19, 921–960. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sun, Z. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 311–321. [Google Scholar] [CrossRef]
- Amiri, A.; Naraghi, M.; Ahmadi, G.; Soleymaniha, M.; Shanbedi, M. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem 2018, 8, 40–71. [Google Scholar] [CrossRef]
- Niu, L.; Coleman, J.N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z. Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small 2016, 12, 272–293. [Google Scholar] [CrossRef] [PubMed]
- Parviz, D.; Irin, F.; Shah, S.A.; Das, S.; Sweeney, C.B.; Green, M.J. Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene. Adv. Mater. 2016, 28, 8796–8818. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Jiang, X.; Zhu, L. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J. Mater. Chem. A 2013, 1, 10592–10606. [Google Scholar] [CrossRef]
- Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Flint, E.B.; Suslick, K.S. The temperature of cavitation. Science 1991, 253, 1397–1399. [Google Scholar] [CrossRef] [PubMed]
- Lotya, M.; King, P.J.; Khan, U.; De, S.; Coleman, J.N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4, 3155–3162. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, A.; Samori, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Han, J.T.; Jang, J.I.; Kim, H.; Hwang, J.Y.; Yoo, H.K.; Woo, J.S.; Choi, S.; Kim, H.Y.; Jeong, H.J.; Jeong, S.Y.; et al. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation. Sci. Rep. 2014, 4, 5133. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Karthik, P.S.; Hada, M.; Nishikawa, T.; Hayashi, Y. Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication. Nanomaterials 2017, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, A.S.; Obraztsova, E.A.; Belkin, A.V.; Monat, C.; Rojo-Romeo, P.; Obraztsova, E.D. Liquid-phase exfoliation of flaky graphite. J. Nanophotonics 2016, 10, 012525. [Google Scholar] [CrossRef]
- Bergin, S.D.; Nicolosi, V.; Streich, P.V.; Giordani, S.; Sun, Z.; Windle, A.H.; Ryan, P.; Niraj, N.P.P.; Wang, Z.T.; Carpenter, L.; et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 2008, 20, 1876–1881. [Google Scholar] [CrossRef]
- Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-Concentration Solvent Exfoliation of Graphene. Small 2010, 6, 864–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J.N. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 2012, 50, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1420. [Google Scholar] [CrossRef]
- Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 2014, 4, 027116. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Tanna, V.A.; Yavitt, B.M.; Dimitrakopoulos, C.; Winter, H.H. Fast Production of High-Quality Graphene via Sequential Liquid Exfoliation. ACS Appl. Mater. Interfaces 2015, 7, 27027–27030. [Google Scholar] [CrossRef] [PubMed]
- Doebbelin, M.; Ciesielski, A.; Haar, S.; Osella, S.; Bruna, M.; Minoia, A.; Grisanti, L.; Mosciatti, T.; Richard, F.; Prasetyanto, E.A.; et al. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites. Nat. Commun. 2016, 7, 11090. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Wang, J.N. Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 2011, 47, 6888–6890. [Google Scholar] [CrossRef] [PubMed]
- Shahil, K.M.F.; Balandin, A.A. Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Wajid, A.S.; Das, S.; Irin, F.; Ahmed, H.S.T.; Shelburne, J.L.; Parviz, D.; Fullerton, R.J.; Jankowski, A.F.; Hedden, R.C.; Green, M.J. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 2012, 50, 526–534. [Google Scholar] [CrossRef]
- Ma, H.; Shen, Z.; Yi, M.; Ben, S.; Liang, S.; Liu, L.; Zhang, Y.; Zhang, X.; Ma, S. Direct exfoliation of graphite in water with addition of ammonia solution. J. Colloid Interface Sci. 2017, 503, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Buzaglo, M.; Shtein, M.; Kober, S.; Lovrincic, R.; Vilan, A.; Regev, O. Critical parameters in exfoliating graphite into graphene. Phys. Chem. Chem. Phys. 2013, 15, 4428–4435. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.; Khan, U.; Nirmalraj, P.N.; Boland, J.; Coleman, J.N. Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. J. Phys. Chem. C 2011, 115, 5422–5428. [Google Scholar] [CrossRef]
- Chong, K.Y.; Chia, C.H.; Chook, S.W.; Zakaria, S.; Lucas, D. Simplified production of graphene oxide assisted by high shear exfoliation of graphite with controlled oxidation. New J. Chem. 2018, 42, 4507–4512. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Wang, Q.; Peng, W.; Yu, H. Ultrahigh performance heat spreader based on gas-liquid exfoliation boron nitride nanosheets. Nanotechnology 2017, 28, 475602. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z.; Abu Kassim, N.F.; Abdullah, A.H.; Abidin, A.S.Z.; Ismail, F.S.; Yusoh, K. Black tea assisted exfoliation using a kitchen mixer allowing one-step production of graphene. Mater. Res. Express 2017, 4, 075607. [Google Scholar] [CrossRef]
- Tran, T.S.; Park, S.J.; Yoo, S.S.; Lee, T.; Kim, T. High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv. 2016, 6, 12003–12008. [Google Scholar] [CrossRef]
- Liu, L.; Shen, Z.; Yi, M.; Zhang, X.; Ma, S. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv. 2014, 4, 36464–36470. [Google Scholar] [CrossRef]
- Varrla, E.; Paton, K.R.; Backes, C.; Harvey, A.; Smith, R.J.; McCauley, J.; Coleman, J.N. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 2014, 6, 11810–11819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nacken, T.J.; Damm, C.; Walter, J.; Rueger, A.; Peukert, W. Delamination of graphite in a high pressure homogenizer. RSC Adv. 2015, 5, 57328–57338. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.E.; Lomeda, J.R.; Sun, Z.; Tour, J.M.; Barron, A.R. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett. 2009, 9, 3460–3462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, T.; Gao, X.; Liu, H.; Zhang, X. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization. Mater. Express 2017, 7, 491–499. [Google Scholar] [CrossRef]
- Paton, K.R.; Anderson, J.; Pollard, A.J.; Sainsbury, T. Production of few-layer graphene by microfluidization. Mater. Res. Express 2017, 4, 025604. [Google Scholar] [CrossRef]
- Narsimhan, G.; Goel, P. Drop coalescence during emulsion formation in a high-pressure homogenizer for tetradecane-in-water emulsion stabilized by sodium dodecyl sulfate. J. Colloid Interface Sci. 2001, 238, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 2007, 82, 478–488. [Google Scholar] [CrossRef]
- Burhan, M.; Chua, K.J.E.; Ng, K.C. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis. Energy Convers. Manag. 2016, 116, 58–71. [Google Scholar] [CrossRef]
- Azoubel, S.; Magdassi, S. The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge. Carbon 2010, 48, 3346–3352. [Google Scholar] [CrossRef]
- Kluge, J.; Muhrer, G.; Mazzotti, M. High pressure homogenization of pharmaceutical solids. J. Supercrit. Fluids 2012, 66, 380–388. [Google Scholar] [CrossRef]
- Buzaglo, M.; Shtein, M.; Regev, O. Graphene Quantum Dots Produced by Microfluidization. Chem. Mater. 2016, 28, 21–24. [Google Scholar] [CrossRef]
- Qian, J.; Yan, J.; Shen, C.; Xi, F.; Dong, X.; Liu, J. Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. J. Mater. Sci. 2018, 53, 12103–12114. [Google Scholar] [CrossRef]
- Yi, M.; Li, J.; Shen, Z.; Zhang, X.; Ma, S. Morphology and structure of mono- and few-layer graphene produced by jet cavitation. Appl. Phys. Lett. 2011, 99, 123112. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z.; Zhang, W.; Zhu, J.; Liu, L.; Liang, S.; Zhang, X.; Ma, S. Hydrodynamics-assisted scalable production of boron nitride nanosheets and their application in improving oxygen-atom erosion resistance of polymeric composites. Nanoscale 2013, 5, 10660–10667. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yi, M.; Shen, Z.; Ma, S.; Zhang, X.; Xing, Y. Experimental study on a designed jet cavitation device for producing two-dimensional nanosheets. Sci. China Technol. Sci. 2012, 55, 2815–2819. [Google Scholar] [CrossRef]
- Liang, S.; Shen, Z.; Yi, M.; Liu, L.; Zhang, X.; Cai, C.; Ma, S. Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation. J. Nanosci. Nanotechnol. 2015, 15, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.; Feng, G.; Li, Q.; Zheng, Y. Production of graphene nanosheets by supercritical CO2 process coupled with micro-jet exfoliation. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 691–698. [Google Scholar] [CrossRef]
- Liang, S.; Yi, M.; Shen, Z.; Liu, L.; Zhang, X.; Ma, S. One-step green synthesis of graphene nanomesh by fluid-based method. RSC Adv. 2014, 4, 16127–16131. [Google Scholar] [CrossRef]
- Rangappa, D.; Sone, K.; Wang, M.; Gautam, U.K.; Golberg, D.; Itoh, H.; Ichihara, M.; Honma, I. Rapid and Direct Conversion of Graphite Crystals into High-Yielding, Good-Quality Graphene by Supercritical Fluid Exfoliation. Chem. Eur. J. 2010, 16, 6488–6494. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Sang, O.K. Surfactant mediated liquid phase exfoliation of graphene. Nano Converg. 2015, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.N. Liquid-Phase Exfoliation of Nanotubes and Graphene. Adv. Funct. Mater. 2009, 19, 3680–3695. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.N. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res. 2013, 46, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S.V.; Gleeson, H.F.; Hill, E.W.; et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Steriotis, T.A.; Stubos, A.K. Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 2009, 5, 1841–1845. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Hao, R.; Hou, Y.; Tian, Y.; Shen, C.; Gao, H.; Liang, X. Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Res. 2009, 2, 706–712. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, X.; Liu, F.; Yang, X.; Roesler, C.; Fischer, R.A.; Muhler, M.; Schuhmann, W. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants. Chem. Commun. 2014, 50, 10382–10385. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Lu, J.; Sun, P.; Zhu, Y.; Jiang, X. Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chem. Phys. Lett. 2013, 568, 198–201. [Google Scholar] [CrossRef]
- Xu, J.; Dang, D.K.; Van Tam, T.; Liu, X.; Chung, J.S.; Hur, S.H.; Choi, W.M.; Kim, E.J.; Kohl, P.A. Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J. Colloid Interface Sci. 2014, 418, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Coleman, A.C.; Katsonis, N.; Browne, W.R.; van Wees, B.J.; Feringa, B.L. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem. Commun. 2010, 46, 7539–7541. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Choi, W.S.; Lee, Y.B.; Noh, Y. Production of graphene by exfoliation of graphite in a volatile organic solvent. Nanotechnology 2011, 22, 365601. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir 2010, 26, 3208–3213. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yu, J.; Dai, S. Preparation of Inorganic Materials Using Ionic Liquids. Adv. Mater. 2010, 22, 261–285. [Google Scholar] [CrossRef] [PubMed]
- Grothe, D.C.; Meyer, W.; Janietz, S. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties. Molecules 2012, 17, 6593–6604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Fulvio, P.F.; Baker, G.A.; Veith, G.M.; Unocic, R.R.; Mahurin, S.M.; Chi, M.; Dai, S. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem. Commun. 2010, 46, 4487–4489. [Google Scholar] [CrossRef] [PubMed]
- Nuvoli, D.; Valentini, L.; Alzari, V.; Scognamillo, S.; Bon, S.B.; Piccinini, M.; Illescas, J.; Mariani, A. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 2011, 21, 3428–3431. [Google Scholar] [CrossRef]
- Ager, D.; Vasantha, V.A.; Crombez, R.; Texter, J. Aqueous Graphene Dispersions-Optical Properties and Stimuli-Responsive Phase Transfer. ACS Nano 2014, 8, 11191–11205. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z.; Liang, S.; Liu, L.; Zhang, X.; Ma, S. Water can stably disperse liquid-exfoliated graphene. Chem. Commun. 2013, 49, 11059–11061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, X.; Li, H.; Xing, X.; Jin, L.; Cao, Q.; Li, P. Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. J. Mater. Sci. 2018, 53, 2484–2496. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGovern, I.T.; et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duesberg, G.S.; Burghard, M.; Muster, J.; Philipp, G.; Roth, S. Separation of carbon nanotubes by size exclusion chromatography. Chem. Commun. 1998, 3, 435–436. [Google Scholar] [CrossRef]
- Green, A.A.; Hersam, M.C. Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. Nano Lett. 2009, 9, 4031–4036. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J.; Lotya, M.; Coleman, J.N. The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J. Phys. 2010, 12, 135–141. [Google Scholar] [CrossRef]
- Sun, Z.; Masa, J.; Liu, Z.; Schuhmann, W.; Muhler, M. Highly Concentrated Aqueous Dispersions of Graphene Exfoliated by Sodium Taurodeoxycholate: Dispersion Behavior and Potential Application as a Catalyst Support for the Oxygen-Reduction Reaction. Chem. Eur. J. 2012, 18, 6972–6978. [Google Scholar] [CrossRef] [PubMed]
- Guardia, L.; Fernandez-Merino, M.J.; Paredes, J.I.; Solis-Fernandez, P.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J.M.D. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 2011, 49, 1653–1662. [Google Scholar] [CrossRef]
- Notley, S.M. Highly Concentrated Aqueous Suspensions of Graphene through Ultrasonic Exfoliation with Continuous Surfactant Addition. Langmuir 2012, 28, 14110–14113. [Google Scholar] [CrossRef] [PubMed]
- Aydin, F.; Chu, X.; Uppaladadium, G.; Devore, D.; Goyal, R.; Murthy, N.S.; Zhang, Z.; Kohn, J.; Duttt, M. Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. J. Phys. Chem. B 2016, 120, 3666–3676. [Google Scholar] [CrossRef] [PubMed]
- Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Steriotis, T.A.; Stubos, A.K.; Trapalis, C. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun. 2009, 149, 2172–2176. [Google Scholar] [CrossRef]
- Sun, Z.; Poeller, S.; Huang, X.; Guschin, D.; Taetz, C.; Ebbinghaus, P.; Masa, J.; Erbe, A.; Kilzer, A.; Schuhmann, W.; et al. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 2013, 64, 288–294. [Google Scholar] [CrossRef]
- Sun, Z.; Vivekananthan, J.; Guschin, D.A.; Huang, X.; Kuznetsov, V.; Ebbinghaus, P.; Sarfraz, A.; Muhler, M.; Schuhmann, W. High-Concentration Graphene Dispersions with Minimal Stabilizer: A Scaffold for Enzyme Immobilization for Glucose Oxidation. Chem. Eur. J. 2014, 20, 5752–5761. [Google Scholar] [CrossRef] [PubMed]
- Patole, A.S.; Patole, S.P.; Kang, H.; Yoo, J.; Kim, T.; Ahn, J. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J. Colloid Interface Sci. 2010, 350, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.T.; Hersam, M.C. Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange. J. Am. Chem. Soc. 2010, 132, 17661–17663. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, M.; Valentini, L.; Kenny, J.M.; Mutlay, I. Graphene based composites prepared through exfoliation of graphite platelets in methyl methacrylate/poly (methyl methacrylate). Polym. Int. 2012, 61, 1079–1083. [Google Scholar] [CrossRef]
- May, P.; Khan, U.; Hughes, J.M.; Coleman, J.N. Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. J. Phys. Chem. C 2012, 116, 11393–11400. [Google Scholar] [CrossRef]
- Wu, H.; Rook, B.; Drzal, L.T. Dispersion optimization of exfoliated graphene nanoplatelet in polyetherimide nanocomposites: Extrusion, precoating, and solid state ball milling. Polym. Compos. 2013, 34, 426–432. [Google Scholar] [CrossRef]
- Milani, M.A.; Gonzalez, D.; Quijada, R.; Basso, N.R.S.; Cerrada, M.L.; Azambuja, D.S.; Galland, G.B. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties. Compos. Sci. Technol. 2013, 84, 1–7. [Google Scholar] [CrossRef]
- Xu, L.; McGraw, J.; Gao, F.; Grundy, M.; Ye, Z.; Gu, Z.; Shepherd, J.L. Production of High-Concentration Graphene Dispersions in Low-Boiling-Point Organic Solvents by Liquid-Phase Noncovalent Exfoliation of Graphite with a Hyperbranched Polyethylene and Formation of Graphene/Ethylene Copolymer Composites. J. Phys. Chem. C 2013, 117, 10730–10742. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Y.; Bergeret, A.; Longerey, M.; Che, J. Preparation of Polylactide/Graphene Composites from Liquid-Phase Exfoliated Graphite Sheets. Polym. Compos. 2014, 35, 396–403. [Google Scholar] [CrossRef]
- Amiri, A.; Zubir, M.N.M.; Dimiev, A.M.; Teng, K.H.; Shanbedi, M.; Kazi, S.N.; Bin Rozali, S. Facile, environmentally friendly, cost effective and scalable production of few-layered graphene. Chem. Eng. J. 2017, 326, 1105–1115. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Cho, D.; Kang, B.; Kwon, H.; Kim, Y.; Park, S.O.; Jung, G.Y.; Shin, E.; Kim, W.; et al. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat. Commun. 2015, 6, 8294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhu, X.; Xie, X. Direct Exfoliation of High-Quality, Atomically Thin MoSe2 Layers in Water. Adv. Sustain. Syst. 2018, 2, 1700107. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci. Rep. 2018, 8, 5567. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, R.; Zhou, D.; Ding, G.; Soah, J.M.; Yue, C.Y.; Lu, X. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 2015, 83, 188–197. [Google Scholar] [CrossRef]
- Garcia Calvo-Flores, F.; Dobado, J.A. Lignin as Renewable Raw Material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, G.; Xing, W.; Sitharaman, B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J. Mater. Chem. B 2014, 2, 6354–6362. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Kalaee, M.; Alavi, Z.S.; Ghiasi, S.M.A.; Esfandiar, A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 2012, 50, 3015–3025. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Yin, J. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Appl. Mater. Interfaces 2011, 3, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Dimiev, A.M.; Ceriotti, G.; Metzger, A.; Kim, N.D.; Tour, J.M. Chemical Mass Production of Graphene Nanoplatelets in similar to 100% Yield. ACS Nano 2016, 10, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.M.; Imae, T.; Hill, J.P.; Yamauchi, Y.; Ariga, K.; Shrestha, L.K. Defect-free exfoliation of graphene at ultra-high temperature. Colloids Surf. A 2018, 538, 127–132. [Google Scholar] [CrossRef]
- Wahid, M.H.; Eroglu, E.; Chen, X.; Smith, S.M.; Raston, C.L. Functional multi-layer graphene-algae hybrid material formed using vortex fluidics. Green Chem. 2013, 15, 650–655. [Google Scholar] [CrossRef]
- Dong, L.; Chen, Z.; Zhao, X.; Ma, J.; Lin, S.; Li, M.; Bao, Y.; Chu, L.; Leng, K.; Lu, H.; et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat. Commun. 2018, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, M.; Shen, Z. Kitchen blender for producing high-quality few-layer graphene. Carbon 2014, 78, 622–626. [Google Scholar] [CrossRef]
- Pattammattel, A.; Kumar, C.V. Kitchen Chemistry 101: Multigram Production of High Quality Biographene in a Blender with Edible Proteins. Adv. Funct. Mater. 2015, 25, 7088–7098. [Google Scholar] [CrossRef]
- Narayan, R.; Lim, J.; Jeon, T.; Li, D.J.; Kim, S.O. Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon 2017, 119, 555–568. [Google Scholar] [CrossRef]
- Liu, L.; Shen, Z.; Zhang, X.; Ma, S. Low-temperature treatment for preservation and separation of graphene dispersions. J. Mater. Sci. 2018, 53, 13875–13885. [Google Scholar] [CrossRef]
- Pinakov, D.V.; Chekhova, G.N.; Okotrub, A.V.; Asanov, I.P.; Shubin, Y.V.; Fedorovskaya, E.O.; Plyusnin, P.E.; Bulusheva, L.G. Structure and supercapacitor properties of few-layer low-fluorinated graphene materials. J. Mater. Sci. 2018, 53, 13053–13066. [Google Scholar] [CrossRef]
No | Preparation Methods | Companies |
---|---|---|
1 | Reduction of Graphene Oxide | Ningbo Morch Technology Co., Ltd. (Ningbo, China) The Sixth Element (Changzhou) Materials Technology Co., Ltd. (Changzhou, China) SUNANO ENERGY (Taizhou, China) Shanghai Carbon Source Huigu New Material Technology Co., Ltd. (Shanghai, China) Jining Lite Nanotechnology Co., Ltd. (Jining, China) Beijing Carbon Century Technology Co., Ltd. (Beijing, China) Xiamen Kaina Graphene Technology Co., Ltd. (Xiamen, China) |
2 | Liquid-Phase Exfoliation | Deyang Carbonene Technology Co., Ltd. (Deyang, China) Hengli Sheng Tai (Xiamen) Graphene Technology Co., Ltd. (Xiamen, China) Shanghai LEVSON Nanotechnology Co., Ltd. (Shanghai, China) |
3 | Supercritical Fluid Exfoliation | Nanjing Ke Fu Nanotechnology Co., Ltd. (Nanjing, China) Qingdao Delta Nanotechnology Co., Ltd. (Qingdao, China) |
4 | Chemical Vapor Deposition | Chongqing Mo Xi Technology Co., Ltd. (Chongqing, China) Changzhou Two Dimensional Carbon Technology Co., Ltd. (Changzhou, China) |
No | Method | Exfoliation Medium | Time (h) | Concentration (mg mL−1) | Reference |
---|---|---|---|---|---|
1 | Bath sonication | NMP | 0.5 | 0.01 | [21] |
2 | Sonication | NMP | 460 | 1.2 | [40] |
3 | Bath sonication | O-DCB | 8 | 0.0066 | [43] |
4 | Sonication (sequential) | NMP | 8 | 0.43 | [44] |
5 | Tip sonication | NMP/azobenzene | 3 | 0.07 | [45] |
6 | Bath sonication | NMP/NaOH | 1.5 | 0.07 | [46] |
7 | Bath sonication | Water/SC | 430 | 0.3 | [34] |
8 | Sonication | Water/SC | 12 | 0.25 | [47] |
9 | Sonication | Water/PVP | 1 | 0.42 | [48] |
10 | Bath sonication | Water/ammonia solution | 8 | 0.058 | [49] |
11 | Sonication | Water/Triton X-100 | 12 | 0.7 | [50] |
12 | Sonication | Low boiling point solvents | 48 | 0.5 | [51] |
No | Exfoliation Medium | Exfoliation Time (h) | Concentration (mg mL−1) | Reference |
---|---|---|---|---|
1 | NMP | 0.5 | 0.01 | [19] |
2 | Water/SC | 2 | 1.1 | [24] |
3 | Water/PVP | 2 | 0.7 | [24] |
4 | Water/Black liquor | 10 | 10 | [53] |
5 | Water/Black tea | 0.25 | 0.032 | [54] |
6 | NMP | 1 | 0.65 | [55] |
7 | 40 vol % IPA–water | 1 | 0.27 | [56] |
8 | NMP | 1 | 1 | [57] |
9 | NMP | 6 | 0.251 | [58] |
10 | OCDB | 1.5 | 0.03 | [59] |
No | Organic Solvents | Surface Tension (mJ m−2) | Boiling Point (°C) | Chemical Structure | Concentration (mg mL−1) | Reference |
---|---|---|---|---|---|---|
1 | N-methyl-2-pyrrolidone (NMP) | 40 | 203 | | 0.01 | [21,77] |
2 | γ-butyrolactone (GBL) | 46.5 | 204 | | <0.01 | [21] |
3 | N,N-dimethylacetamide (DMAC) | 36.7 | 165 | | <0.01 | [21] |
4 | N,N-dimethylformamide (DMF) | 37.1 | 154 | | 0.0041~0.0045 | [78,79] |
5 | Dimethylsulfoxide (DMSO) | 42.9 | 189 | | 0.0037~0.0041 | [78,79] |
6 | Ortho-dichlorobenzene (ODCB) | 37 | 181 | | 0.03 | [59] |
Surfactant | Type of Surfactant | Concentration to Achieve γ = 41 mJ m−2 | Batch Concentration (mg mL−1) | Continuous Concentration (mg mL−1) |
---|---|---|---|---|
Pluronic®108 | Nonionic | 0.1% | 0.11 | 10.23 |
Pluronic®127 | Nonionic | 0.1% | 0.078 | 6.55 |
Sodium dodecylsulfate (SDS) | Anionic | 7 mM | 0.06 | 4.92 |
Hexadecyltrimethylammonium bromide (CTAB) | Cationic | 0.6 mM | 0.05 | 4.05 |
Tetradecyltrimethylammonium bromide (TTAB) | Cationic | 2.1 mM | 0.055 | 5.01 |
Dodecyltrimethylammonium bromide (DTAB) | Cationic | 10 mM | 0.06 | 5.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials 2018, 8, 942. https://doi.org/10.3390/nano8110942
Xu Y, Cao H, Xue Y, Li B, Cai W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials. 2018; 8(11):942. https://doi.org/10.3390/nano8110942
Chicago/Turabian StyleXu, Yanyan, Huizhe Cao, Yanqin Xue, Biao Li, and Weihua Cai. 2018. "Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges" Nanomaterials 8, no. 11: 942. https://doi.org/10.3390/nano8110942
APA StyleXu, Y., Cao, H., Xue, Y., Li, B., & Cai, W. (2018). Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 8(11), 942. https://doi.org/10.3390/nano8110942