Full Tetragonal Phase Stabilization in ZrO2 Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticles Synthesis
2.2. Compositional, Structural, and Morphological Characterization
2.3. Luminescence
3. Results
3.1. Assessment of Solid Solution Homogeneity by X-Ray Diffraction, Raman Spectroscopy, and Transmission Electron Microscopy
3.2. Use of Eu Luminescence as a Local Probe
3.2.1. Overview of the Luminescence Properties
3.2.2. Assessment of Solid Solution Homogeneity at the Atomic Scale. Comparison with CeO2
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joo, J.; Yu, T.; Kim, Y.; Park, H.; Wu, F.; Zhang, J.; Hyeon, T. Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- LI, P.; Chen, I.; Pennerhahn, J. X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B 1993, 48, 10063–10073. [Google Scholar] [CrossRef]
- Li, P.; Chen, I.; Pwnnrhahn, J. Effect of Dopants on Zirconia Stabilization—An X-ray Absorption Study: I, Trivalent Dopants. J. Am. Ceram. Soc. 1994, 77, 118–128. [Google Scholar] [CrossRef]
- Ma, Y.; Ono, Y. Doped Zirconia, or Zirconia-Like, Dielectric Film Transistor Structure and Deposition Method for Same. U.S. Patent No. 6,297,539, 2 October 2001. [Google Scholar]
- Meetei, S.; Singh, S. Hydrothermal synthesis and white light emission of cubic ZrO2:Eu3+ nanocrystals. J. Alloys Compd. 2014, 587, 143–147. [Google Scholar] [CrossRef]
- Kusakabe, K.; Sotowa, K.; Eda, T.; Iwamoto, Y. Methane steam reforming over Ce-ZrO2-supported noble metal catalysts at low temperature. Fuel Process. Technol. 2004, 86, 319–326. [Google Scholar] [CrossRef]
- Golden, S.J.; Hatfield, R.; Pless, J.D. Catalyst with Lanthanide-Doped Zirconia and Methods of Making. U.S. Patent No. 9,011,784, 21 April 2015. [Google Scholar]
- Yamamoto, O.; Arachi, Y.; Sakai, H.; Takeda, Y.; Imanishi, N.; Mizutani, Y.; Kawai, M.; Nakamura, Y. Zirconia Based Oxide Ion Conductors for Solid Oxide Fuel Cells. Ionics 1998, 4, 403–408. [Google Scholar] [CrossRef]
- Myint, T.; Gunawidjaja, R.; Eilers, H. Spectroscopic Properties of Nanophase Eu-Doped ZrO2 and Its Potential Application for Fast Temperature Sensing under Extreme Conditions. J. Phys. Chem. C 2012, 116, 21629–21634. [Google Scholar] [CrossRef]
- Kiisk, V.; Puust, L.; Mandar, H.; Ritslaid, P.; Rahn, M.; Bite, I.; Jankovica, D.; Sildos, I.; Jaaniso, R. Phase stability and oxygen-sensitive photoluminescence of ZrO2:Eu,Nb nanopowders. Mater. Chem. Phys. 2018, 214, 135–142. [Google Scholar] [CrossRef]
- Lokesha, H.; Chauhan, N.; Nagabhushana, K.; Singh, F. Dosimetric properties of ZrO2 and ZrO2:Sm3+ exposed to beta rays. Ceram. Int. 2018, 44, 18871–18877. [Google Scholar] [CrossRef]
- Vidya, Y.; Gurushantha, K.; Nagabhushana, H.; Sharma, S.; Anantharaju, K.; Shivakumara, C.; Suresh, D.; Nagaswarupa, H.; Prashantha, S.; Anilkumar, M. Phase transformation of ZrO2:Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities. J. Alloys Compd. 2015, 622, 86–96. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Tu, D.; Chen, Z.; Huang, M.; Zhu, H.; Ma, E.; Chen, X. Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles: Optical Spectroscopy, Time-Resolved Fluorescence Resonance Energy Transfer Biodetection, and Targeted Imaging. J. Am. Chem. Soc. 2012, 134, 15083–15090. [Google Scholar] [CrossRef] [PubMed]
- Speghini, A.; Bettinelli, M.; Riello, P.; Bucella, S.; Benedetti, A. Preparation, structural characterization, and luminescence properties of Eu3+-doped nanocrystalline ZrO2. J. Mater. Res. 2005, 20, 2780–2791. [Google Scholar] [CrossRef]
- Moon, B.; Kwon, I.; Jeong, J.; Kim, C.; Yi, S.; Kim, P.; Choi, H.; Kim, J. Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles. J. Luminescence 2007, 122, 855–857. [Google Scholar] [CrossRef]
- Ghosh, P.; Priolkar, K.; Patra, A. Understanding the local structures of Eu and Zr in Eu2O3 doped and coated ZrO2 nanocrystals by EXAFS study. J. Phys. Chem. C 2007, 111, 571–578. [Google Scholar] [CrossRef]
- Tiseanu, C.; Cojocaru, B.; Parvulescu, V.; Sanchez-Dominguez, M.; Primus, P.; Boutonnet, M. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys. 2012, 14, 12970–12981. [Google Scholar] [CrossRef] [PubMed]
- Tiseanu, C.; Parvulescu, V.I.; Cojocaru, B.; Pemartin, K.; Sanchez-Dominguez, M.; Boutonnet, M. In situ Raman and Time-Resolved Luminescence Investigation of the Local Structure of ZrO2 in the Amorphous to Crystalline Phase Transition. J. Phys. Chem. C 2012, 116, 16776–16783. [Google Scholar] [CrossRef]
- Smits, K.; Grigorjeva, L.; Millers, D.; Sarakovskis, A.; Opalinska, A.; Fidelus, J.; Lojkowski, W. Europium doped zirconia luminescence. Opt. Mater. 2010, 32, 827–831. [Google Scholar] [CrossRef]
- Das, S.; Chang, C.; Yang, C.; Som, S.; Lu, C. Microemulsion-derived ZrO2:Ce3+ nanoparticles: Phase transformation and photoluminescence characterization. Mater. Charact. 2015, 106, 20–26. [Google Scholar] [CrossRef]
- Tani, E.; Yoshimura, M.; Somyia, S. Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J. Am. Ceram. Soc. 1983, 66, 11–14. [Google Scholar] [CrossRef]
- Behbahani, A.; Rowshanzamir, S.; Esmaeilifar, A.; Kluson, P. Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Eng. 2012, 42, 908–917. [Google Scholar] [CrossRef]
- Ramos-Guerra, A.; Martinez-Merlin, I.; Falcony, C. The role of the stabilizing agent on the structural and luminescent properties of hydrothermally synthesized ZrO2:Tb3+ phosphors. Ceram. Int. 2018, 44, 13744–13749. [Google Scholar] [CrossRef]
- Bugrov, A.; Smyslov, R.; Zavialova, A.; Kirilenko, D.; Pankin, D. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosyst.-Phys. Chem. Math. 2018, 9, 378–388. [Google Scholar] [CrossRef]
- Kolthoff, I.M. Theory of Coprecipitation. The Formation and Properties of Crystalline Precipitates. J. Phys. Chem. 1932, 36, 860–881. [Google Scholar] [CrossRef]
- Lopez-Luke, T.; De la Rosa, E.; Romero, V.; Angles-Chavez, C.; Salas, P. Solvent and surfactant effect on the self-assembly and luminescence properties of ZrO2:Eu3+ nanoparticles. Appl. Phys. B Lasers Opt. 2011, 102, 641–649. [Google Scholar] [CrossRef]
- Danks, A.; Hall, S.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horizons 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Smits, K.; Sarakovskis, A.; Grigorjeva, L.; Millers, D.; Grabis, J. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia. J. Appl. Phys. 2014, 115. [Google Scholar] [CrossRef]
- Ghosh, P.; Patra, A. Role of surface coating in ZrO2/Eu3+ nanocrystals. Langmuir 2006, 22, 6321–6327. [Google Scholar] [CrossRef] [PubMed]
- Lue, Q.; Guo, F.; Sun, L.; Li, A.; Zhao, L. Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence. J. Phys. Chem. C 2008, 112, 2836–2844. [Google Scholar] [CrossRef]
- Smits, K.; Olsteins, D.; Zolotarjovs, A.; Laganovska, K.; Millers, D.; Ignatans, R.; Grabis, J. Doped zirconia phase and luminescence dependence on the nature of charge compensation. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Vidya, Y.; Anantharaju, K.; Nagabhushana, H.; Sharma, S.; Nagaswarupa, H.; Prashantha, S.; Shivakumara, C.; Danithkumar. Combustion synthesized tetragonal ZrO2:Eu3+ nanophosphors: Structural and photoluminescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chandrasekhar, D.; Kadam, R. Tetragonal ZrO2:Nd3+ nanosphere: Combustion synthesis, luminescence and photoacoustic spectroscopy. J. Mol. Struct. 2015, 1102, 141–145. [Google Scholar] [CrossRef]
- Manjunatha, S.; Krishna, R.; Thomas, T.; Panigrahi, B.; Dharmaprakash, M. Moss-Burstein effect in stable, cubic ZrO2:Eu3+ nanophosphors derived from rapid microwave-assisted solution-combustion technique. Mater. Res. Bull. 2018, 98, 139–147. [Google Scholar] [CrossRef]
- Soares, M.; Nico, C.; Oliveira, D.; Peres, M.; Rino, L.; Fernandes, A.; Monteiro, T.; Costa, F. Red light from ZrO2:Eu3+ nanostructures. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 2012, 177, 712–716. [Google Scholar] [CrossRef]
- Smits, K.; Grigorjeva, L.; Millers, D.; Kundzins, K.; Ignatans, R.; Grabis, J.; Monty, C. Luminescence properties of zirconia nanocrystals prepared by solar physical vapor deposition. Opt. Mater. 2014, 37, 251–256. [Google Scholar] [CrossRef]
- Lovisa, L.; Araujo, V.; Tranquilin, R.; Longo, E.; Li, M.; Paskocimas, C.; Bomio, M.; Motta, F. White photoluminescence emission from ZrO2 co-doped with Eu3+, Tb3+ and Tm3+. J. Alloys Compd. 2016, 674, 245–251. [Google Scholar] [CrossRef]
- McFarland, E.; Metiu, H. Catalysis by Doped Oxides. Chem. Rev. 2013, 113, 4391–4427. [Google Scholar] [CrossRef] [PubMed]
- Seisenbaeva, G.; Daniel, G.; Nedelec, J.; Gun’ko, Y.; Kessler, V. High surface area ordered mesoporous nano-titania by a rapid surfactant-free approach. J. Mater. Chem. 2012, 22, 20374–20380. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Boutonnet, M.; Solans, C. A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res. 2009, 11, 1823–1829. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Liotta, L.; Di Carlo, G.; Pantaleo, G.; Venezia, A.; Solans, C.; Boutonnet, M. Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal. Today 2010, 158, 35–43. [Google Scholar] [CrossRef]
- De Monredon, S.; Cellot, A.; Ribot, F.; Sanchez, C.; Armelao, L.; Gueneau, L.; Delattre, L. Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem. 2002, 12, 2396–2400. [Google Scholar] [CrossRef]
- Feinberg, A.; Perry, C. Structural disorder and phase-transitions in ZrO2-Y2O3 system. J. Phys. Chem. Solids 1981, 42, 513–518. [Google Scholar] [CrossRef]
- Toraya, H.; Gilfrich, J.; Goldsmith, C.; Huang, T.; Jenkins, R.; Noyan, I.; Smith, D.; Predecki, P. Applications of whole-powder-pattern fitting technique in materialscharacterization. Adv. X-ray Anal. 1994, 37, 37–47. [Google Scholar]
- Meetei, S.; Singh, S.; Singh, N.; Sudarsan, V.; Ningthoujam, R.; Tyagi, M.; Gadkari, S.; Tewari, R.; Vatsa, R. Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO2:Eu3+ phosphor: Effect of doping and annealing. J. Luminescence 2012, 132, 537–544. [Google Scholar] [CrossRef]
- Liao, J.; Zhou, D.; Yang, B.; Liu, R.; Zhang, Q. Sol-gel preparation and photoluminescence properties of tetragonal ZrO2:Y3+, Eu3+ nanophosphors. Opt. Mater. 2012, 35, 274–279. [Google Scholar] [CrossRef]
- Yoon, S.; Pi, J.; Park, K. Structural and photoluminescence properties of solution combustion-processed novel ZrO2 doped with Eu3+ and Al3+. Dyes Pigments 2018, 150, 231–240. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Li, Y. Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd. 2004, 381, 266–271. [Google Scholar] [CrossRef]
- Leib, E.; Pasquarelli, R.; Blankenburg, M.; Muller, M.; Schreyer, A.; Janssen, R.; Weller, H.; Vossmeyer, T. High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium. Part. Part. Syst. Charact. 2016, 33, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.J. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3. Phys. Rev. 1968, 171, 283. [Google Scholar] [CrossRef]
- Cojocaru, B.; Avram, D.; Kessler, V.; Parvulescu, V.; Seisenbaeva, G.; Tiseanu, C. Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO2. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, M.; Wahid, K.; Mao, Y. Systematic Studies on RE2Hf2O7:5%Eu3+ (RE = Y, La, Pr, Gd, Er, and Lu) Nanoparticles: Effects of the A-Site RE3+ Cation and Calcination on Structure and Photoluminescence. J. Phys. Chem. C 2016, 120, 14828–14839. [Google Scholar] [CrossRef]
- Yan, C.; Sun, L.; Liao, C.; Zhang, Y.; Lu, Y.; Huang, S.; Lu, S. Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals. Appl. Phys. Lett. 2003, 82, 3511–3513. [Google Scholar] [CrossRef]
- Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Avram, D.; Rotaru, C.; Cojocaru, B.; Sanchez-Dominiguez, M.; Florea, M.; Tiseanu, C. Heavily impregnated ceria nanoparticles with europium oxide: Spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments. J. Mater. Sci. 2014, 49, 2117–2126. [Google Scholar] [CrossRef]
- Florea, M.; Avram, D.; Maraloiu, V.A.; Cojocaru, B.; Tiseanu, C. Heavy doping ceria by wet impregnation: A viable alternative to bulk doping approaches. Nanoscale 2018. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shuk, P.; Greenblatt, M. Hydrothermal synthesis and properties of Ce1−xSmxO2−x/2 and Ce1−xCaxO2−x solid solutions. Chem. Mater. 1997, 9, 2240–2245. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Navrotsky, A. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J. Mater. Chem. 2010, 20, 10577–10587. [Google Scholar] [CrossRef]
Crystallite Size (nm) Calculated from XRD, (±0.5 nm) and Cell Parameters (±5 × 10−4 Å) | Eu Concentration Estimated from XRF Data (±1.5%) | ||||||
---|---|---|---|---|---|---|---|
Sample | 500 °C | c | a | 1000 °C | c | a | |
10Eu(I)-ZrO2(RH) | 13 | 5.135 | 3.626 | 23.3 | 5.185 | 3.606 | 9.6% |
10Eu(I)-ZrO2(OW) | 15 | 5.130 | 3.627 | 16.5 | 5.194 | 3.608 | 9.1% |
10Eu(B)-ZrO2(OW) | 14.4 | 5.189 | 3.613 | 16.2 | 5.200 | 3.614 | 10.2% |
20Eu(I)-ZrO2(CIT) | * | - | - | 16.5 | 5.220 | 3.673 | 21.4% |
Sample | Estimated Average Lifetime (ms) (±0.01 ms) | |
---|---|---|
λex = 250 nm λem = 606 nm | λex = 300 nm λem = 614 nm | |
10Eu(I)–ZrO2(RH) | 0.97 ms | 2.47 ms |
10Eu(I)–ZrO2(OW) | 0.93 ms | 2.45 ms |
10Eu(B)–ZrO2(OW) | 1.07 ms | 2.76 ms |
20Eu(I)–ZrO2(CIT) | * 1.3 ms |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colbea, C.; Avram, D.; Cojocaru, B.; Negrea, R.; Ghica, C.; Kessler, V.G.; Seisenbaeva, G.A.; Parvulescu, V.; Tiseanu, C. Full Tetragonal Phase Stabilization in ZrO2 Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique. Nanomaterials 2018, 8, 988. https://doi.org/10.3390/nano8120988
Colbea C, Avram D, Cojocaru B, Negrea R, Ghica C, Kessler VG, Seisenbaeva GA, Parvulescu V, Tiseanu C. Full Tetragonal Phase Stabilization in ZrO2 Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique. Nanomaterials. 2018; 8(12):988. https://doi.org/10.3390/nano8120988
Chicago/Turabian StyleColbea, Claudiu, Daniel Avram, Bogdan Cojocaru, Raluca Negrea, Corneliu Ghica, Vadim G. Kessler, Gulaim A. Seisenbaeva, Vasile Parvulescu, and Carmen Tiseanu. 2018. "Full Tetragonal Phase Stabilization in ZrO2 Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique" Nanomaterials 8, no. 12: 988. https://doi.org/10.3390/nano8120988