Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. TGA, DSC, and Raman Measurement
3.2. Current–Voltage (I–V) Characteristics of the Memory Devices
3.3. Proposed Memory Mechanisms
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.C.; Yu, H.C.; Huang, C.Y.; Chung, W.L.; Wu, S.L.; Su, Y.K. Nonvolatile bio-memristor fabricated with egg albumen film. Sci. Rep. 2015, 5, 10022. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.I.; Nebgatikova, N.A.; Kotin, I.A.; Antonova, I.V. Two-layer and composite films based on oxidized and fluorinated graphene. Phys. Chem. Chem. Phys. 2017, 19, 19010–19020. [Google Scholar] [CrossRef] [PubMed]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chang, Y.F.; Kim, M.H.; Bang, S.; Kim, T.H.; Chen, Y.C.; Lee, J.H.; Park, B.G. Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device. Phys. Chem. Chem. Phys. 2017, 19, 18988–18995. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; He, J.H.; Li, H.; Xu, Q.F.; Li, N.J.; Li, D.Y.; Chen, D.Y.; Wang, L.H.; Chen, X.F.; Zhang, K.Q.; et al. Organic multilevel memory devices of long-term environmental stability via incorporation of fluorine. Adv. Electron. Mater. 2016, 2, 1500474. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hu, B.L.; Wang, J.X.; Gao, J.K.; Li, G.; Xiong, W.W.; Zou, B.H.; Suruki, M.; Aratani, N.; Yamada, H.; et al. Rewritable multilevel memory performance of a tetraazatetracene donor-acceptor derivative with good endurance. Chem. Asian J. 2015, 10, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D.H.; Moon, C.W.; Park, G.D.; Suh, J.; Hwang, J.; Kim, S.Y.; et al. Organolead Halide Perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 2016, 28, 6562–6567. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, J.S. Flexible multistate data storage devices fabricated using natural lighin at room temperature. ACS Appl. Mater. Interfaces 2017, 9, 6207–6212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wu, B.; Dong, H.L.; Xu, Q.F.; He, J.H.; Li, Y.Y.; Jiang, J.; Lu, J.M. The application of a small-molecule-based ternary memory device in transient thermal-probing electronics. Adv. Mater. 2017, 29, 1604162. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Lee, S.H.; Poon, C.T.; Ng, M.; Yam, V.W.W. Manipulation of push-pull system by functionalization of porphyrin at β-position for high-performance solution-processable ternary resistive memory devices. ChemNanoMat 2017, 3, 164–167. [Google Scholar] [CrossRef]
- Liu, Z.J.; He, J.H.; Zhuang, H.; Li, H.; Li, N.J.; Chen, D.Y.; Xu, Q.F.; Lu, J.M.; Zhang, K.Q.; Wang, L.H. Effect of single atom substitution in benzochalcogendiazole acceptors on the performance of ternary memory devices. J. Mater. Chem. C 2015, 3, 9145–9153. [Google Scholar] [CrossRef]
- Khurana, G.; Misra, P.; Katiyar, R.S. Multilevel resistive memory switching in graphene sandwiched organic polymer heterostructure. Carbon 2014, 76, 341–347. [Google Scholar] [CrossRef]
- He, D.W.; Zhang, H.; Liu, H.F.; Liu, H.Z.; Li, H.; Lu, J.M. Adjustment of conformation change and charge trapping in ion-doped polymers to achieve ternary memory performance. J. Mater. Chem. C 2013, 1, 7883–7889. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.X.; Zhou, F.; Li, H.; Dong, H.L.; Li, Y.Y.; Hu, Z.J.; Xu, Q.F.; Lu, J.M. Metal complex modified azo polymers for multilevel organic memories. Nanoscale 2015, 7, 7659–7664. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.F.; Shi, E.B.; Hou, X.; Xia, S.G.; He, J.H.; Xu, Q.F.; Li, H.; Li, N.J.; Chen, D.Y.; Lu, J.M. Upgrading electroresistive memory from binary to ternary through single-atom substitution in the molecular design. Chem. Asian J. 2017, 12, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.Y.H.; Poon, C.T.; Yam, V.W.W. A phosphore oxide-containing organogold(III) complex for solution-processable resistive memory devices with ternary memory performances. J. Am. Chem. Soc. 2016, 138, 6368–6371. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.J.; Li, H.; Xu, Q.F.; He, J.H.; Lu, J.M. Fluorine-induced highly reproducible resistive switching performance: Facile morphology control through the transition between J- and H-aggregation. ACS Appl. Mater. Interfaces 2017, 9, 9926–9934. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.K.; Lee, J.M.; Kim, S.; Park, J.S.; Park, H.I.; Ahn, C.W.; Lee, K.J.; Lee, T.; Kim, S.O. Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. Nano Lett. 2012, 12, 2217–2221. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.Y.; Ma, Y.; He, J.H.; Long, G.K.; Wang, C.Y.; Chen, W.Q.; Liu, Y.; Xu, Q.F.; Lu, J.M.; Zhang, Q.C. The substituent group effect on the morphology and memory performance of phenazine derivatives. J. Mater. Chem. C 2015, 3, 3167–3172. [Google Scholar] [CrossRef]
- Jia, F.M.; Wu, L.; Meng, J.; Yang, M.; Kong, H.; Liu, T.J.; Xu, H. Preparation, characterization and fluorescent imaging of multi-walled carbon nanotube-porphyrin conjugate. J. Mater. Chem. 2009, 19, 8950–8957. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. J. Mater. Chem. A 2014, 2, 14867. [Google Scholar] [CrossRef]
- ChandraKishorea, S.; Pandurangan, A. Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 2014, 4, 9905–9911. [Google Scholar] [CrossRef]
- Song, Y.; Jeong, H.; Chung, S.; Ahn, G.H.; Kim, T.Y.; Jang, J.; Yoo, D.; Jeong, H.; Javey, A.; Lee, T. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Sci. Rep. 2016, 6, 33967. [Google Scholar] [CrossRef] [PubMed]
- Achyuthan, K.E.; Bergstedt, T.S.; Chen, L.; Jones, R.M.; Kumaraswamy, S.; Kushon, S.A.; Ley, K.D.; Lu, L.; McBranch, D.; Mukundan, H.; et al. Fluorescence superquenching of conjugated polyelectrolytes: Applications for biosensing and drug discovery. J. Mater. Chem. 2005, 15, 2648–2656. [Google Scholar] [CrossRef]
- Liu, J.Q.; Tian, J.N.; Li, Y.; Yao, X.J.; Hu, Z.D.; Chen, X.G. Binding of the bioactive component daphnetin to human serum albumin demonstrated using tryptophan fluorescence quenching. Macromol. Biosci. 2004, 4, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Attar, H.A.; Monkman, A.P. Effect of surfactant on FRET and quenching in DNA sequence detection using conjugated polymers. Adv. Funct. Mater. 2008, 18, 2498–2509. [Google Scholar] [CrossRef]
- Liang, G.D.; Wu, J.L.; Gao, H.Y.; Wu, Q.; Lu, J.; Zhu, F.M.; Tang, B.Z. General platform for remarkably thermoresponsive fluorescent polymers with memory function. ACS Macro Lett. 2016, 5, 909–914. [Google Scholar] [CrossRef]
- Jin, F.; Xu, L.; Zheng, M.L.; Wang, J.X.; Dong, X.Z.; Zhao, Z.S.; Song, Y.L.; Duan, X.M. Inhibited/enhanced fluorescence of embedded fluorescent defects by manipulation of spontaneous emission based on photonic stopband. RSC Adv. 2017, 7, 19737–19741. [Google Scholar] [CrossRef]
- Liu, G.; Ling, Q.D.; Teo, E.Y.H.; Zhu, C.X.; Chan, D.S.H.; Neoh, K.G.; Kang, E.T. Electrical conductance tuning and bistable switching in poly(N-vinylcarbazole)-carbon nanotube composite films. ACS Nano 2009, 3, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wen, D. Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes. Nanomaterials 2018, 8, 114. https://doi.org/10.3390/nano8020114
Li L, Wen D. Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes. Nanomaterials. 2018; 8(2):114. https://doi.org/10.3390/nano8020114
Chicago/Turabian StyleLi, Lei, and Dianzhong Wen. 2018. "Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes" Nanomaterials 8, no. 2: 114. https://doi.org/10.3390/nano8020114
APA StyleLi, L., & Wen, D. (2018). Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes. Nanomaterials, 8(2), 114. https://doi.org/10.3390/nano8020114