Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chubenko, O.; Baturin, S.S.; Kovi, K.K.; Sumant, A.V.; Baryshev, S.V. Locally resolved electron emission area and unified view of field emission from ultrananocrystalline diamond films. ACS Appl. Mater. Interfaces 2017, 9, 33229–33237. [Google Scholar] [CrossRef] [PubMed]
- Terranova, M.L.; Orlanducci, S.; Rossi, M.; Tamburri, E. Nanodiamonds for field emission: State of the art. Nanoscale 2015, 7, 5094–5114. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.J.; Ficek, M.; Kunuku, S.; Panda, K.; Yeh, C.J.; Park, J.Y.; Sawczak, M.; Michałowski, P.P.; Leou, K.C.; Bogdanowicz, R.; et al. Self-organized multi-layered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices. Nanoscale 2018, 10, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.J.; Kurian, J.; Chen, H.C.; Dong, C.L.; Lee, C.Y.; Tai, N.H.; Lin, I.N. Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. J. Phys. D Appl. Phys. 2012, 45, 365303. [Google Scholar] [CrossRef]
- Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D’Haen, J.; Hardy, A.; Van Bael, M.; et al. Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films. Phys. Status Solidi RRL 2014, 8, 705–709. [Google Scholar] [CrossRef]
- Saravanan, A.; Huang, B.R.; Sankaran, K.J.; Tai, N.H.; Lin, I.N. Highly conductive diamond-graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties. ACS Appl. Mater. Interfaces 2015, 7, 14035–14042. [Google Scholar] [CrossRef] [PubMed]
- Bernholc, J.; Kajihara, S.A.; Wang, C.; Antonelli, A.; Davis, R.F. Theory of native defects, doping and diffusion in diamond and silicon carbide. Mater. Sci. Eng. B 1992, 11, 265–272. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Saraykin, V.V.; Dravin, V.A.; Zavedeyev, E.V.; Makarov, S.V.; Bronsky, V.S.; Gippius, A.A. Lithium implanted into diamond: Regular trends and anomalies. Surf. Coat. Tech. 2016, 307, 236–242. [Google Scholar] [CrossRef]
- O’Donnell, K.M.; Martin, T.L.; Edmonds, M.T.; Tadich, A.; Thomsen, L.; Ristein, J.; Pakes, C.I.; Fox, N.A.; Ley, L. Photoelectron emission from lithiated diamond. Phys. Status Solidi A 2014, 211, 2209–2222. [Google Scholar] [CrossRef]
- Te Nijenhuis, J.; Cao, G.Z.; Smits, P.C.H.J.; van Enkevort, W.J.P.; Giling, L.J.; Alkemade, P.F.A.; Nesladek, M.; Remes, Z. Incorporation of lithium in single crystal diamond: Diffusion profiles and optical and electrical properties. Diam. Relat. Mater. 1997, 6, 1726–1732. [Google Scholar] [CrossRef]
- Uzan-Saguy, C.; Cytermann, C.; Fizgeer, B.; Richter, V.; Brener, R.; Kalish, R. Diffusion of lithium in diamond. Phys. Status Solidi A 2002, 193, 508–516. [Google Scholar] [CrossRef]
- Othman, M.Z.; May, P.W.; Fox, N.A.; Heard, P.J. Incorporation of lithium and nitrogen into CVD diamond thin films. Diam. Relat. Mater. 2014, 44, 1–7. [Google Scholar] [CrossRef]
- Halliwell, S.C.; May, P.W.; Fox, N.A.; Othman, M.Z. Investigations of the co-doping of boron and lithium into CVD diamond thin films. Diam. Relat. Mater. 2017, 76, 115–122. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Srinivasu, K.; Yeh, C.J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K.C.; Leung, K.T.; Van Bael, M.K.; et al. Field electron emission enhancement in lithium implanted and annealed nitrogen incorporated nanocrystalline diamond films. Appl. Phys. Lett. 2017, 110, 261602. [Google Scholar] [CrossRef]
- Joseph, P.T.; Tai, N.H.; Lin, I.N. Monolithic n-type conductivity on low temperature grown freestanding ultrananocrystalline diamond films. Appl. Phys. Lett. 2010, 97, 042107. [Google Scholar] [CrossRef]
- Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; Haen, J.D.; Haenen, K.; Verbeeck, J.; et al. CVD diamond growth from nanodiamond seeds buried under a thin chromium layer. Diam. Relat. Mater. 2016, 64, 163–168. [Google Scholar] [CrossRef]
- Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladek, M.; Haenen, K. On the origin of diamond plates deposited at low temperature. Cryst. Growth Des. 2017, 17, 4306–4314. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 119, 173–181. [Google Scholar] [CrossRef]
- Urban, F.; Passacantando, M.; Giubileo, F.; Iemmo, L.; Bartolomeo, A.D. Transport and field emission properties of MoS2 bilayers. Nanomaterials 2018, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Cox, D.C.; Silva, S.R.P. Electron field emission from a single carbon nanotube: Effects of anode location. Appl. Phys. Lett. 2005, 87, 103112. [Google Scholar] [CrossRef]
- Mapelli, C.; Castiglioni, C.; Zerbi, G.; Mullen, K. Common force field for graphite and polycyclic aromatic hydrocarbons. Phys. Rev. B 1999, 60, 12710. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 121405. [Google Scholar] [CrossRef]
- Ilie, A.; Ferrari, A.C.; Yagi, T.; Rodil, S.E.; Robertson, J.; Barborini, E.; Milani, P. Role of sp2 phase in field emission from nanostructured carbons. J. Appl. Phys. 2001, 90, 2024–2032. [Google Scholar] [CrossRef]
- Cancado, L.G.; Takai, K.; Enoki, T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Joseph, P.T.; Tai, N.H.; Lee, C.Y.; Niu, H.; Pong, W.F.; Lin, I.N. Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films. J. Appl. Phys. 2008, 103, 043720. [Google Scholar] [CrossRef]
- Hu, X.J.; Ye, J.S.; Liu, H.J.; Shen, Y.G.; Chen, X.H.; Hu, H. n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing. J. Appl. Phys. 2011, 109, 053524. [Google Scholar] [CrossRef]
- Corbella, C.; Oncins, G.; Gomez, M.A.; Polo, M.C.; Pascual, E.; Cespedes, J.G.; Andujar, J.L.; Bertran, E. Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering. Diam. Relat. Mater. 2005, 14, 1103–1107. [Google Scholar] [CrossRef]
- Khun, N.W.; Liu, E.; Yang, G.C.; Ma, W.G.; Jiang, S.P. Structure and corrosion behavior of platinum/ruthenium/nitrogen doped diamond like carbon thin films. J. Appl. Phys. 2009, 106, 013506. [Google Scholar] [CrossRef]
- Pleskov, Y.V.; Evstefeva, Y.E.; Baranov, A.M. Threshold effect of admixtures of platinum on the electrochemical activity of amorphous diamond-like carbon thin films. Diam. Relat. Mater. 2002, 11, 1518–1522. [Google Scholar] [CrossRef]
- Smith, S.P.; Landstrass, M.I.; Wilson, R.G.; Benninghoven, A.; Janssen, K.T.F.; Tumpner, J.; Werner, H.W. Secondary Ion Mass Spectrometry, SIMS VIII, 8th ed.; Wiley: New York, NY, USA, 1992; p. 159. [Google Scholar]
- Sankaran, K.J.; Yeh, C.J.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Sundaravel, B.; Leou, K.C.; Leung, K.T.; Van Bael, M.K.; et al. Microstructural Effect on the Enhancement of Field Electron Emission Properties of Nanocrystalline Diamond Films by Li-Ion Implantation and Annealing Processes. ACS Omega 2018, in press. [Google Scholar]
- Yamaguchi, H.; Masuzawa, T.; Nozue, S.; Kudo, Y.; Saito, I.; Koe, J.; Kudo, M.; Yamada, T.; Takakuwa, Y.; Okano, K. Electron emission from conduction band of diamond with negative electron affinity. Phys. Rev. B 2009, 80, 165321. [Google Scholar] [CrossRef]
- Geis, M.W.; Deneault, S.; Krohn, K.E.; Marchant, M.; Lyszczarz, T.M.; Cooke, D.L. Field emission at 10 V cm−1 with surface emission cathodes on negative-electron-affinity insulators. Appl. Phys. Lett. 2005, 87, 192115. [Google Scholar] [CrossRef]
Materials | Resistivity (Ω·cm) | Turn-on Field (V/µm) | FEE Current Density (mA/cm2) | Life-Time (min) |
---|---|---|---|---|
Li ion implanted NCD [14] | 9 × 10–2 | 10.6 | 25.5 @ 23.2 V/µm | 1090 |
Freestanding Li doped UNCD [15] | 1.2 | 4.2 | 0.3 @ 10.0 V/µm | --- |
NCD/Si [Present study] | 7.1 × 104 | 21.3 | 4.8 @ 35.7 V/µm | 88 |
NCD/Cr/Si [Present study] | 4.5 × 103 | 11.8 | 6.4 @ 20.0 V/µm | 215 |
NCD/Cr/LNO [Present study] | 1 × 10–2 | 2.3 | 11.0 @ 4.9 V/µm | 445 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, K.J.; Panda, K.; Hsieh, P.-Y.; Pobedinskas, P.; Park, J.Y.; Van Bael, M.K.; Tai, N.-H.; Lin, I.-N.; Haenen, K. Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials 2018, 8, 653. https://doi.org/10.3390/nano8090653
Sankaran KJ, Panda K, Hsieh P-Y, Pobedinskas P, Park JY, Van Bael MK, Tai N-H, Lin I-N, Haenen K. Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials. 2018; 8(9):653. https://doi.org/10.3390/nano8090653
Chicago/Turabian StyleSankaran, Kamatchi Jothiramalingam, Kalpataru Panda, Ping-Yen Hsieh, Paulius Pobedinskas, Jeong Young Park, Marlies K Van Bael, Nyan-Hwa Tai, I-Nan Lin, and Ken Haenen. 2018. "Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties" Nanomaterials 8, no. 9: 653. https://doi.org/10.3390/nano8090653
APA StyleSankaran, K. J., Panda, K., Hsieh, P.-Y., Pobedinskas, P., Park, J. Y., Van Bael, M. K., Tai, N.-H., Lin, I.-N., & Haenen, K. (2018). Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 8(9), 653. https://doi.org/10.3390/nano8090653