Atomic Scale Simulation on the Fracture Mechanism of Black Phosphorus Monolayer under Indentation
Abstract
1. Introduction
2. Simulation Details
3. Results and Discussions
3.1. Indentation Process and Fracture Behavior
3.2. Stress Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. [Google Scholar] [CrossRef] [PubMed]
- Polanco-Gonzalez, J.; Carranco-Rodríguez, J.A.; Enríquez-Carrejo, J.L.; Mani-Gonzalez, P.G.; Domínguez-Esquivel, J.M.; Ramos, M. Band gap tuning in 2D layered materials by angular rotation. Materials 2017, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, H.; Lee, C.; Lee, S.; Jang, H.; Ahn, J.; Kim, J.; Lee, H. Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 2011, 5, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Dallavalle, M.; Sändig, N.; Zerbetto, F. Stability, dynamics, and lubrication of MoS2 platelets and nanotubes. Langmuir 2012, 28, 7393–7400. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xie, G.; Luo, J. Black phosphorus as a new lubricant. Friction 2018, 6, 116–142. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Xu, Q.; Ma, T.; Yu, G.; Zhang, C.; Geng, D.; Yu, Z.; Zhang, S.; Wang, W. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029. [Google Scholar] [CrossRef] [PubMed]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef]
- Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yang, D.; Chen, L.; Liu, D.; Cai, M.; Fan, X. A first-principle theoretical study of mechanical and electronic properties in graphene single-walled carbon nanotube junctions. Materials 2017, 10, 1300. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Rana, K.; Ahn, J.H. Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett. 2013, 4, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M.S. Black-phosphorus Terahertz photodetectors. arXiv, 2018; arXiv:1805.00735. [Google Scholar]
- Liu, G.; Jin, W.; Xu, N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem. Int. Ed. 2016, 55, 13384–13397. [Google Scholar] [CrossRef] [PubMed]
- Klemenz, A.; Pastewka, L.; Balakrishna, S.G.; Caron, A.; Bennewitz, R.; Moseler, M. Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett. 2014, 14, 7145–7152. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Ren, Z.; Jing, G.; Guo, J.; Peng, B.; Jiang, H. Numerical investigation of the fracture mechanism of defective graphene sheets. Materials 2017, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wei, N.; Zheng, Y. Mechanical properties of highly defective graphene: From brittle rupture to ductile fracture. Nanotechnology 2013, 24, 505703. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qin, Z.; Jung, G.S.; Martin-Martinez, F.J.; Zhang, K.; Buehler, M.J.; Warner, J.H. Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects. ACS Nano 2016, 10, 9831–9839. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.D.; Wan, Q.; Pei, Q.X.; Quek, S.S.; Liu, Z.S.; Zhang, Y.W.; Shenoy, V.B. On the failure load and mechanism of polycrystalline graphene by nanoindentation. Sci. Rep. 2014, 4, 7437. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tabarraei, A.; Spearot, D.E. Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology 2015, 26, 175703. [Google Scholar] [CrossRef] [PubMed]
- Terdalkar, S.S.; Huang, S.; Yuan, H.; Rencis, J.J.; Zhu, T.; Zhang, S. Nanoscale fracture in graphene. Chem. Phys. Lett. 2010, 494, 218–222. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 25001. [Google Scholar] [CrossRef]
- Chen, H.; Huang, P.; Guo, D.; Xie, G. Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 2016, 120, 29491–29497. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, J.; Wei, N. Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Appl. Phys. Lett. 2015, 107, 23107. [Google Scholar] [CrossRef]
- Tao, J.; Shen, W.; Wu, S.; Liu, L.; Feng, Z.; Wang, C.; Hu, C.; Yao, P.; Zhang, H.; Pang, W. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362–11370. [Google Scholar] [CrossRef] [PubMed]
- Lamuta, C.; Cupolillo, A.; Politano, A.; Aliev, Z.S.; Babanly, M.B.; Chulkov, E.V.; Pagnotta, L. Indentation fracture toughness of single-crystal Bi2Te3 topological insulators. Nano Res. 2016, 9, 1032–1042. [Google Scholar] [CrossRef]
- Torres, J.; Zhu, Y.; Liu, P.; Lim, S.C.; Yun, M. Adhesion energies of 2D graphene and MoS2 to silicon and metal substrates. Phys. Status Solidi A 2018, 215, 1700512. [Google Scholar] [CrossRef]
- Zhou, X.W.; Johnson, R.A.; Wadley, H. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 144113. [Google Scholar] [CrossRef]
- Jiang, J. Parametrization of Stillinger–Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus. Nanotechnology 2015, 26, 315706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Park, H.S.; Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 2013, 114, 64307. [Google Scholar] [CrossRef]
- Jiang, J.; Rabczuk, T.; Park, H.S. A Stillinger–Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson’s ratio and edge stress-induced bending. Nanoscale 2015, 7, 6059–6068. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. Chemical order in amorphous silicon carbide. Phys. Rev. B 1994, 49, 16349. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Cai, K.; Jiang, J.; Zheng, J.; Zhao, J.; Wei, N. Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures. Carbon 2017, 117, 399–410. [Google Scholar] [CrossRef]
- Li, L.; Xia, Z.H.; Curtin, W.A.; Yang, Y.Q. Molecular dynamics simulations of interfacial sliding in carbon-nanotube/diamond nanocomposites. J. Am. Ceram. Soc. 2009, 92, 2331–2336. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Hodak, M.; Lee, R.S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 2000, 62, 13104. [Google Scholar] [CrossRef]
- Toghraie, D.; Mokhtari, M.; Afrand, M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 152–161. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Q.; Martini, A. Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol. A 2013, 31, 30801. [Google Scholar] [CrossRef]
- Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563. [Google Scholar] [CrossRef] [PubMed]
- Politano, A.; Vitiello, M.S.; Viti, L.; Boukhvalov, D.W.; Chiarello, G. The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials “beyond graphene” and topological insulators. FlatChem 2017, 1, 60–64. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; van der Zant, H.S.; Agraït, N.; Rubio Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Komaragiri, U.; Begley, M.R.; Simmonds, J.G. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 2005, 72, 203–212. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhan, Z.; Li, T.; Zhen, L.; Xu, C. Elastic properties of suspended black phosphorus nanosheets. Appl. Phys. Lett. 2016, 108, 13104. [Google Scholar] [CrossRef]
- Jiang, J.; Park, H.S. Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 385304. [Google Scholar] [CrossRef]
- Romasco, A.L.; Friedman, L.H.; Fang, L.; Meirom, R.A.; Clark, T.E.; Polcawich, R.G.; Pulskamp, J.S.; Dubey, M.; Muhlstein, C.L. Deformation behavior of nanograined platinum films. Thin Solid Films 2010, 518, 3866–3874. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Ma, T.; Luo, J. Atomic scale simulation on the anti-pressure and friction reduction mechanisms of MoS2 monolayer. Materials 2018, 11, 683. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chu, F. Atomic behaviors of crack propagation in bcc iron under dynamic loading rate with rectangular fluctuation. Mater. Sci. Eng. A 2017, 707, 81–91. [Google Scholar] [CrossRef]
- Costescu, B.I.; Gräter, F. Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Phys. Chem. Chem. Phys. 2014, 16, 12582–12590. [Google Scholar] [CrossRef] [PubMed]
- Vlassak, J.J.; Ciavarella, M.; Barber, J.R.; Wang, X. The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 2003, 51, 1701–1721. [Google Scholar] [CrossRef]
Pair | C-P | C-Pt | Pt-P |
---|---|---|---|
εij [meV] | 6.878 | 38.635 | 91.209 |
σij [Å] | 3.4225 | 2.971 | 2.9565 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Y.; Luo, J. Atomic Scale Simulation on the Fracture Mechanism of Black Phosphorus Monolayer under Indentation. Nanomaterials 2018, 8, 682. https://doi.org/10.3390/nano8090682
Liu Y, Liu Y, Luo J. Atomic Scale Simulation on the Fracture Mechanism of Black Phosphorus Monolayer under Indentation. Nanomaterials. 2018; 8(9):682. https://doi.org/10.3390/nano8090682
Chicago/Turabian StyleLiu, Yang, Yuhong Liu, and Jianbin Luo. 2018. "Atomic Scale Simulation on the Fracture Mechanism of Black Phosphorus Monolayer under Indentation" Nanomaterials 8, no. 9: 682. https://doi.org/10.3390/nano8090682
APA StyleLiu, Y., Liu, Y., & Luo, J. (2018). Atomic Scale Simulation on the Fracture Mechanism of Black Phosphorus Monolayer under Indentation. Nanomaterials, 8(9), 682. https://doi.org/10.3390/nano8090682