Research Progress in Organic Photomultiplication Photodetectors
Abstract
:1. Introduction
2. Basic Structures and Working Mechanisms of Organic PM Photodetectors
2.1. Basic Structures of Organic PM Photodetectors
2.2. Working Mechanisms of Organic PM Photodetectors
2.3. Key Performance Parameters of Organic PM Photodetectors
2.3.1. Photoresponsivity
2.3.2. External (Internal) Quantum Efficiency
2.3.3. Detectivity
2.3.4. Linear Dynamic Range
2.3.5. Response Time
3. Organic PM Photodetector Based on Small Molecular Compounds
3.1. Single Junction Type Organic Small Molecular PM Photodetectors
3.2. Bulk Heterojunction Type Organic Small Molecular PM Photodetectors
3.3. Performance Studies on Organic Small Molecular PM Photodetectors
3.3.1. Water/Oxygen Treatment
3.3.2. Quantum Efficiency
3.3.3. Dark Current
3.3.4. Response Speed
3.3.5. Spectrum Adjustment
4. Organic PM Photodetectors Based on Polymers
4.1. Bulk Heterojunction Based on Organic Semiconductors
4.1.1. Donor/Acceptor Weight Ratio of 1:1
4.1.2. Donor/Acceptor Weight Ratio Higher than 1:1
4.1.3. Donor/Acceptor Weight Ratio Lower than 1:1
4.2. Bulk Heterojunction with Inorganic Nanoparticles or Quantum Dots
4.3. Bulk Heterojunction with Insulating Polymers
4.4. Performance Studies of Polymer PM Photodetectors
4.4.1. Dark Current
4.4.2. Broadband Response
4.4.3. Narrowband Response
5. Other Mechanisms of Organic PM Photodetectors
6. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101. [Google Scholar] [CrossRef]
- Kim, S.; Lim, Y.T.; Soltesz, E.G.; De Grand, A.M.; Lee, J.; Nakayama, A.; Parker, J.A.; Mihaljevic, T.; Laurence, R.G.; Dor, D.M.; et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2003, 22, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E.H. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation. Science 2009, 324, 1542–1544. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A.J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-D.; Chou, S.Y. Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 2010, 18, 931–937. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Yang, Y.M.; You, J.; Hong, Z.; Chang, W.H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Konstantatos, G.; Sargent, E.H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Koppens, F.H.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Parvez, K.; Li, R.; Dong, R.; Feng, X.; Mullen, K. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater. 2015, 27, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, H.-D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.-H.; Chen, H.-W.; et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics 2009, 3, 59–63. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Liu, Z.; Schlather, A.; Ajayan, P.M.; Koppens, F.H.L.; Nordlander, P.; Halas, N.J. Plasmon-Induced Doping of Graphene. ACS Nano 2012, 6, 10222–10228. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Song, J.; Geng, Z.; Zhang, H.; Wang, W.; Xie, L.; Yao, W.; Li, Z. A microfluidics cytometer for mice anemia detection. Lab Chip 2012, 12, 4355–4362. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.Z.; Hijazi, N. Temperature and field dependent effective hole mobility and impact ionization at extremely high fields in amorphous selenium. Appl. Phys. Lett. 2014, 104, 192103. [Google Scholar] [CrossRef]
- Ribordy, G.; Gautier, J.-D.; Zbinden, H.; Gisin, N. Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Appl. Opt. 1998, 37, 2272–2277. [Google Scholar] [CrossRef] [PubMed]
- Hayden, O.; Agarwal, R.; Lieber, C.M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Cova, S.; Ghioni, M.; Lacaita, A.; Samori, C.; Zappa, F. Avalanche photodiodes and quenching circuits for single-photon detection. Appl. Opt. 1996, 35, 1956–1976. [Google Scholar] [CrossRef] [PubMed]
- Pearsall, T.P.; Temkin, H.; Bean, J.C.; Luryi, S. Avalanche gain in GexSi1-x/Si infrared waveguide detectors. IEEE Electron Device Lett. 1986, 7, 330–332. [Google Scholar] [CrossRef]
- Renker, D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 567, 48–56. [Google Scholar] [CrossRef]
- Reznik, A.; Zhao, W.; Ohkawa, Y.; Tanioka, K.; Rowlands, J.A. Applications of avalanche multiplication in amorphous selenium to flat panel detectors for medical applications. J. Mater. Sci. Mater. Electron. 2007, 20, 63–67. [Google Scholar] [CrossRef]
- Baierl, D.; Fabel, B.; Gabos, P.; Pancheri, L.; Lugli, P.; Scarpa, G. Solution-processable inverted organic photodetectors using oxygen plasma treatment. Org. Electron. 2010, 11, 1199–1206. [Google Scholar] [CrossRef]
- Nalwa, K.S.; Cai, Y.; Thoeming, A.L.; Shinar, J.; Shinar, R.; Chaudhary, S. Polythiophene-fullerene based photodetectors: Tuning of spectral response and application in photoluminescence based (bio)chemical sensors. Adv. Mater. 2010, 22, 4157–4161. [Google Scholar] [CrossRef] [PubMed]
- Leem, D.-S.; Lee, K.-H.; Park, K.-B.; Lim, S.-J.; Kim, K.-S.; Wan Jin, Y.; Lee, S. Low dark current small molecule organic photodetectors with selective response to green light. Appl. Phys. Lett. 2013, 103, 043305. [Google Scholar] [CrossRef]
- Nakayama, K.-I.; Hiramoto, M.; Yokoyama, M. A high-speed photocurrent multiplication device based on an organic double-layered structure. Appl. Phys. Lett. 2000, 76, 1194–1196. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xiao, Y.; Li, X. A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles. J. Mater. Chem. C 2016, 4, 5584–5592. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, X.; Wang, Y.; Vadim, A.; Alshehri, S.M.; Ahamad, T.; Ma, D. Deep ultraviolet-to-NIR broad spectral response organic photodetectors with large gain. J. Mater. Chem. C 2016, 4, 2160–2164. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Su, Z.; Fang, F.; Zhang, G.; Wang, J.; Chu, B.; Fang, X.; Wei, Z.; Li, B.; et al. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction. Org. Electron. 2014, 15, 2367–2371. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, L.; Yang, S.Y.; Zou, B.S. Low-voltage pentacene photodetector based on a vertical transistor configuration. Acta Phys. Sin. 2015, 64, 108503. [Google Scholar] [CrossRef]
- Rauch, T.; Böberl, M.; Tedde, S.F.; Fürst, J.; Kovalenko, M.V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336. [Google Scholar] [CrossRef]
- Peumans, P.; Bulović, V.; Forrest, S.R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 2000, 76, 3855–3857. [Google Scholar] [CrossRef]
- Wu, S.-H.; Li, W.-L.; Chu, B.; Su, Z.-S.; Zhang, F.; Lee, C.S. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm. Appl. Phys. Lett. 2011, 99, 023305. [Google Scholar] [CrossRef]
- Alvarado, S.F.; Seidler, P.F.; Lidzey, D.G.; Bradley, D.D.C. Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope. Phys. Rev. Lett. 1998, 81, 1082–1085. [Google Scholar] [CrossRef]
- Caserta, G.; Rispoli, B.; Serra, A. Space-Charge-Limited Current and Band Structure in Amorphous Organic Films. Phys. Status Solidi 1969, 35, 237–248. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Xue, J.; Uchida, S.; Rand, B.P.; Forrest, S.R. 4.2% efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett. 2004, 84, 3013–3015. [Google Scholar] [CrossRef]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595. [Google Scholar] [CrossRef]
- Jansen-van Vuuren, R.D.; Armin, A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Adv. Mater. 2016, 28, 4766–4802. [Google Scholar] [CrossRef] [PubMed]
- Streetman, B.G.; Banerjee, S. Solid-State Electronic Devices, 6th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2005; pp. 406–409. ISBN 978-81-203-3020-7. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006; pp. 666–697. ISBN 978-0-471-14323-9. [Google Scholar]
- Ahmadi, M.; Wu, T.; Hu, B. A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Adv. Mater. 2017, 29, 1605242. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, M.; Imahigashi, T.; Yokoyama, M. Photocurrent multiplication in organic pigment films. Appl. Phys. Lett. 1994, 64, 187–189. [Google Scholar] [CrossRef]
- Hiramoto, M.; Nakayama, K.-I.; Katsume, T.; Yokoyama, M. Field-activated structural traps at organic pigment/metal interfaces causing photocurrent multiplication phenomena. Appl. Phys. Lett. 1998, 73, 2627–2629. [Google Scholar] [CrossRef]
- Hiramoto, M.; Nakayama, K.; Sato, I.; Kumaoka, H.; Yokoyama, M. Photocurrent multiplication phenomena at organic/metal and organic/organic interfaces. Thin Solid Films 1998, 331, 71–75. [Google Scholar] [CrossRef]
- Nakayama, K.-I.; Hiramoto, M.; Yokoyama, M. Photocurrent multiplication at organic/metal interface and surface morphology of organic films. J. Appl. Phys. 2000, 87, 3365–3369. [Google Scholar] [CrossRef]
- Katsume, T.; Hiramoto, M.; Yokoyama, M. Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature. Appl. Phys. Lett. 1996, 69, 3722–3724. [Google Scholar] [CrossRef]
- Hiramoto, M.; Miki, A.; Yoshida, M.; Yokoyama, M. Photocurrent multiplication in organic single crystals. Appl. Phys. Lett. 2002, 81, 1500–1502. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Y. Origin of photomultiplication in C60 based devices. Appl. Phys. Lett. 2007, 91, 203505. [Google Scholar] [CrossRef]
- Hiramoto, M.; Kawase, S.; Yokoyama, M. Photoinduced Hole Injection Multiplication in p-Type Quinacridone Pigment Films. Jpn. J. Appl. Phys. 1996, 35, L349–L351. [Google Scholar] [CrossRef]
- Matsunobu, G.; Oishi, Y.; Yokoyama, M.; Hiramoto, M. High-speed multiplication-type photodetecting device using organic codeposited films. Appl. Phys. Lett. 2002, 81, 1321–1322. [Google Scholar] [CrossRef]
- Hammond, W.T.; Xue, J. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain. Appl. Phys. Lett. 2010, 97, 073302. [Google Scholar] [CrossRef]
- Hiramoto, M.; Fujino, K.; Yoshida, M.; Yokoyama, M. Influence of Oxygen and Water on Photocurrent Multiplication in Organic Semiconductor Films. Jpn. J. Appl. Phys. 2003, 42, 672–675. [Google Scholar] [CrossRef]
- Hiramoto, M.; Suemori, K.; Yokoyama, M. Influence of Oxygen on Photocurrent Multiplication Phenomenon at Organic/Metal Interface. Jpn. J. Appl. Phys. 2003, 42, 2495–2497. [Google Scholar] [CrossRef]
- Hiramoto, M.; Sato, I.; Nakayama, K.-I.; Yokoyama, M. Photocurrent multiplication at organic/metal interface and morphology of metal films. Jpn. J. Appl. Phys. 1998, 37, L1184–L1186. [Google Scholar] [CrossRef]
- Guo, F.; Xiao, Z.; Huang, J. Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross-Linkable Buffer Layer. Adv. Opt. Mater. 2013, 1, 289–294. [Google Scholar] [CrossRef]
- Fang, Y.; Guo, F.; Xiao, Z.; Huang, J. Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB. Adv. Opt. Mater. 2014, 2, 348–353. [Google Scholar] [CrossRef]
- Däubler, T.K.; Neher, D.; Rost, H.; Hörhold, H.H. Efficient bulk photogeneration of charge carriers and photoconductivity gain in arylamino-PPV polymer sandwich cells. Phys. Rev. B Condens. Matter 1999, 59, 1964–1972. [Google Scholar] [CrossRef]
- Campbell, I.H.; Crone, B.K. Bulk photoconductive gain in poly(phenylene vinylene) based diodes. J. Appl. Phys. 2007, 101, 024502. [Google Scholar] [CrossRef]
- Chen, F.-C.; Chien, S.-C.; Cious, G.-L. Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response. Appl. Phys. Lett. 2010, 97, 103301. [Google Scholar] [CrossRef]
- Melancon, J.M.; Živanović, S.R. Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer. Appl. Phys. Lett. 2014, 105, 163301. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci. Rep. 2015, 5, 9181. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, F.; Wang, W.; Fang, Y.; Huang, J. Revealing the working mechanism of polymer photodetectors with ultra-high external quantum efficiency. Phys. Chem. Chem. Phys. 2015, 17, 30712–30720. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, D.; Ma, D.; Vadim, A.; Ahamad, T.; Alshehri, S.M. Ultrahigh Gain Polymer Photodetectors with Spectral Response from UV to Near-Infrared Using ZnO Nanoparticles as Anode Interfacial Layer. Adv. Funct. Mater. 2016, 26, 6619–6626. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lo, M.K.; Yang, G.; Monbouquette, H.G.; Yang, Y. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotechnol. 2008, 3, 543–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.-T.; Chien, S.-C.; Chen, F.-C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants. Appl. Phys. Lett. 2012, 100, 013309. [Google Scholar] [CrossRef]
- Wang, T.; Hu, Y.; Deng, Z.; Wang, Y.; Lv, L.; Zhu, L.; Lou, Z.; Hou, Y.; Teng, F. High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer. RSC Adv. 2017, 7, 1743–1748. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, L.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode. Opt. Express 2017, 25, 7719–7729. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, F.; Wang, W.; An, Q.; Wang, J.; Sun, Q.; Zhang, M. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37,500%. ACS Appl. Mater. Interfaces 2015, 7, 5890–5897. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Li, L.; Gao, M.; Hu, B. Improved Performance of Photomultiplication Polymer Photodetectors by Adjustment of P3HT Molecular Arrangement. ACS Appl. Mater. Interfaces 2015, 7, 22660–22668. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, H.; Tian, Q.; Li, L.; Zhang, F. Solution-processed polymer photodetectors with trap-assisted photomultiplication. Sci. China Phys. Mech. 2015, 58, 1–5. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Bai, H.; Li, L.; Gao, M.; Zhang, M.; Zhan, X. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale 2016, 8, 5578–5586. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhang, F.; Lin, Y.; Wang, W.; Gao, M.; Li, L.; Zhang, J.; Zhan, X. Highly Sensitive Organic Photodetectors with Tunable Spectral Response under Bi-Directional Bias. Adv. Opt. Mater. 2016, 4, 1711–1717. [Google Scholar] [CrossRef]
- Esopi, M.R.; Calcagno, M.; Yu, Q. Organic Ultraviolet Photodetectors Exhibiting Photomultiplication, Low Dark Current, and High Stability. Adv. Mater. Technol. 2017, 2, 1700025. [Google Scholar] [CrossRef]
- Nie, R.; Deng, X.; Feng, L.; Hu, G.; Wang, Y.; Yu, G.; Xu, J. Highly Sensitive and Broadband Organic Photodetectors with Fast Speed Gain and Large Linear Dynamic Range at Low Forward Bias. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Fang, Y.; Dong, Q.; Xiao, Z.; Huang, J. Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection. Appl. Phys. Lett. 2015, 106, 023301. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Bi, C.; Dong, Q.; Guo, F.; Yuan, Y.; Fang, Y.; Xiao, Z.; Huang, J. An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetector with Gain. Adv. Opt. Mater. 2014, 2, 549–554. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Y.; Wang, C.; Hu, R.; Zhang, J.; Xu, D.; Wang, Y. A highly sensitive near-infrared organic photodetector based on oxotitanium phthalocyanine nanocrystals and light-induced enhancement of electron tunnelling. J. Mater. Chem. C 2015, 3, 5073–5077. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Li, L.; Zhang, M.; An, Q.; Wang, J.; Sun, Q. Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region. J. Mater. Chem. C 2015, 3, 7386–7393. [Google Scholar] [CrossRef]
- Gao, M.; Wenbin, W.; Li, L.; Miao, J.; Zhang, F. Highly sensitive polymer photodetectors with a wide spectral response range. Chin. Phys. B 2017, 26, 530–536. [Google Scholar] [CrossRef]
- Ameri, T.; Khoram, P.; Min, J.; Brabec, C.J. Organic ternary solar cells: A review. Adv. Mater. 2013, 25, 4245–4266. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Zhang, F.; Gao, W.; Sun, Q.; Zhang, M.; Yang, C.; Zhang, J. High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy 2018, 45, 177–183. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Li, L.; Wang, J.; Zhang, J.; Zhou, L.; Tang, W. Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules. ACS Appl. Mater. Interfaces 2014, 6, 6537–6544. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Zhang, F.; Sun, Q.; Zhang, M.; Zhang, J.; Tang, W.; Yin, X.; Deng, Z. Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy 2016, 26, 180–191. [Google Scholar] [CrossRef]
- Kokil, A.; Poe, A.M.; Bae, Y.; Della Pelle, A.M.; Homnick, P.J.; Lahti, P.M.; Kumar, J.; Thayumanavan, S. Improved performances in polymer BHJ solar cells through frontier orbital tuning of small molecule additives in ternary blends. ACS Appl. Mater. Interfaces 2014, 6, 9920–9924. [Google Scholar] [CrossRef] [PubMed]
- Dandin, M.; Abshire, P.; Smela, E. Optical filtering technologies for integrated fluorescence sensors. Lab Chip 2007, 7, 955–977. [Google Scholar] [CrossRef] [PubMed]
- Olbright, G.R.; Peyghambarian, N.; Gibbs, H.M.; Macleod, H.A.; Van Milligen, F. Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers. Appl. Phys. Lett. 1984, 45, 1031–1033. [Google Scholar] [CrossRef]
- Armin, A.; Jansen-van Vuuren, R.D.; Kopidakis, N.; Burn, P.L.; Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 2015, 6, 6343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Butun, S.; Aydin, K. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Wu, Y.K.; Luo, X.; Guo, L.J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 2010, 1, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Du, M.; Li, L.; Zhang, M.; Wang, K.; Wang, Y.; Hu, B.; Fang, Y.; Huang, J. Highly Narrowband Photomultiplication Type Organic Photodetectors. Nano Lett. 2017, 17, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhang, F.; Du, M.; Wang, W.; Fang, Y. Photomultiplication type narrowband organic photodetectors working at forward and reverse bias. Phys. Chem. Chem. Phys. 2017, 19, 14424–14430. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Zhang, F.; Du, M.; Wang, W.; Fang, Y. Photomultiplication Type Organic Photodetectors with Broadband and Narrowband Response Ability. Adv. Opt. Mater. 2018, 6, 1800001. [Google Scholar] [CrossRef]
- Shen, L.; Fang, Y.; Wei, H.; Yuan, Y.; Huang, J. A Highly Sensitive Narrowband Nanocomposite Photodetector with Gain. Adv. Mater. 2016, 28, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhang, Y.; Bai, Y.; Zheng, X.; Wang, Q.; Huang, J. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale 2016, 8, 12990–12997. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, J.; Arkhipov, V.I.; Heremans, P.; Poortmans, J. Photomultiplication in Disordered Unipolar Organic Materials. Adv. Funct. Mater. 2006, 16, 784–790. [Google Scholar] [CrossRef]
- Campbell, I.H.; Crone, B.K. A near infrared organic photodiode with gain at low bias voltage. Appl. Phys. Lett. 2009, 95, 263302. [Google Scholar] [CrossRef]
- Qi, D.; Fischbein, M.; Drndić, M.; Šelmić, S. Efficient polymer-nanocrystal quantum-dot photodetectors. Appl. Phys. Lett. 2005, 86, 093103. [Google Scholar] [CrossRef]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; He, Y.; Jin, Y.; Ding, F.; Yang, L.; Ye, Y.; Zhong, S.; Lin, Y.; He, S. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014, 8, 495–520. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Hao, Y.; Cui, Y.; Tian, X.; Zhang, Y.; Wang, H.; Shi, F.; Wei, B.; Huang, W. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. Opt. Express 2014, 22 (Suppl. 2), A376–A385. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, H.; Yang, F.; Tong, P.; Hao, Y.; Sun, Q.; Shi, F.; Zhan, Q.; Wang, H.; Zhu, F. Efficiency enhancement in organic solar cells by incorporating silica-coated gold nanorods at the buffer/active interface. J. Mater. Chem. C 2015, 3, 9859–9868. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Song, J.; Yang, F.; Hao, Y.; Sun, Q.; Guo, J.; Cui, Y.; Wang, H.; Zhu, F. Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. J. Mater. Chem. C 2015, 3, 1082–1090. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Y.; Wang, W.; Cui, Y.; Sun, Q.; Ji, T.; Li, Z.; Wang, H.; Zhu, F. Incorporating silver-SiO2 core-shell nanocubes for simultaneous broadband absorption and charge collection enhancements in organic solar cells. Synth. Met. 2016, 220, 612–620. [Google Scholar] [CrossRef]
- Ji, T.; Wang, Y.; Cui, Y.; Lin, Y.; Hao, Y.; Li, D. Flexible broadband plasmonic absorber on moth-eye substrate. Mater. Today Energy 2017, 5, 181–186. [Google Scholar] [CrossRef]
- Liu, D.; Liang, Q.; Li, G.; Gao, X.; Wang, W.; Zhan, Q.; Ji, T.; Hao, Y.; Cui, Y. Improved efficiency of organic photovoltaic cells by incorporation of auag-alloyed nanoprisms. IEEE J. Photovolt. 2017, PP, 1–6. [Google Scholar] [CrossRef]
- Wang, W.; Cui, Y.; Fung, K.H.; Zhang, Y.; Ji, T.; Hao, Y. Comparison of Nanohole-Type and Nanopillar-Type Patterned Metallic Electrodes Incorporated in Organic Solar Cells. Nanoscale Res. Lett. 2017, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Peter Amalathas, A.; Alkaisi, M.M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 2017, 57, 54–58. [Google Scholar] [CrossRef]
- Zhang, C.; Song, Y.; Wang, M.; Yin, M.; Zhu, X.; Tian, L.; Wang, H.; Chen, X.; Fan, Z.; Lu, L.; et al. Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol-gel Based Nanoimprinting Method. Adv. Funct. Mater. 2017, 27, 1604720. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, Z.; Yu, D.; Lu, L.; Yin, M.; Tavakoli, M.M.; Chen, X.; Hao, Y.; Fan, Z.; Cui, Y.; et al. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Appl. Mater. Interfaces 2016, 8, 10929–10936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, Y.; Wang, W.; Fung, K.H.; Ji, T.; Hao, Y.; Zhu, F. Absorption Enhancement in Organic Solar Cells with a Built-In Short-Pitch Plasmonic Grating. Plasmonics 2014, 10, 773–781. [Google Scholar] [CrossRef]
- Rui, D.; Yanjun, F.; Jungseok, C.; Jun, D.; Zhengguo, X.; Qingfeng, D.; Yongbo, Y.; Andrea, C.; Cheng, Z.X.; Jinsong, H. High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites. Adv. Mater. 2015, 27, 1912–1918. [Google Scholar]
- Liu, C.; Peng, H.; Wang, K.; Wei, C.; Wang, Z.; Gong, X. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. Nano Energy 2016, 30, 27–35. [Google Scholar] [CrossRef]
- Chen, H.-W.; Sakai, N.; Jena, A.K.; Sanehira, Y.; Ikegami, M.; Ho, K.-C.; Miyasaka, T. A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. J. Phys. Chem. Lett. 2015, 6, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Konrad, D.; Wolfgang, T.; Thomas, M.; Michael, S.; Khaja, N.M.; Michael, G. Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage-Driven Energy-Level Alignment. Adv. Funct. Mater. 2015, 25, 6936–6947. [Google Scholar]
- Goh, C.; Scully, S.R.; McGehee, M.D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. J. Appl. Phys. 2007, 101, 114503. [Google Scholar] [CrossRef] [Green Version]
- Levell, J.W.; Giardini, M.E.; Samuel, I.D.W. A hybrid organic semiconductor/silicon photodiode for efficient ultraviolet photodetection. Opt. Express 2010, 18, 3219–3225. [Google Scholar] [CrossRef] [PubMed]
- Yakuphanoglu, F. Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth. Met. 2007, 157, 859–862. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Howell, S.L.; Chen, K.S.; Kang, J.; Sangwan, V.K.; Filippone, S.A.; Turrisi, R.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. Nano Lett. 2016, 16, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Sangwan, V.K.; Wu, C.-C.; Prabhumirashi, P.L.; Geier, M.L.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. USA 2013. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Wang, Y.-Q.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J. Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic−Inorganic Hybrid Photodetectors. J. Am. Chem. Soc. 2010, 132, 12218–12221. [Google Scholar] [CrossRef] [PubMed]
Mechanism | SJ/BJ | Year [Ref] | Device Structure | QE (%) at Bias | Other Performances |
---|---|---|---|---|---|
electrons tunneling | SJ | 1994 [43] | Glass/Au/Me-PTC/Au | 1.0 × 106 (IQE@600 nm), −16 V | Working temperature: −50 °C |
1996 [47] | ITO/NTCDA/Au | 1.3 × 107 (IQE@400 nm), −16 V | Rise time: >60 s | ||
2000 [26] | ITO/PhEt-PTC/NTCDA/Au | 1.7 × 107 (IQE@400 nm), −20 V | Rise time: 3.7 s | ||
2007 [49] | ITO/PEDOT:PSS/C60/BCP/Al | 5.0 × 103 (EQE@450 nm), −4 V | - | ||
2014 [57] | ITO/PEDOT:PSS/C-TPD:ZnO/C60/BCP/Al | 4.0 × 102 (EQE@390 nm), 8 V | LDR: 120 dB; D*: 3.6 × 1011 Jones | ||
BJ | 2002 [51] | ITO/CuPc:C60/Au | 1.5 × 103 (IQE@560 nm), −14 V | Response time: ms | |
2010 [52] | ITO/NTCDA/C60/CuPc:C60/BCP/Al | 3.4 × 104 (EQE), −4 V | Response time: ms | ||
2016 [28] | ITO/TPBi/C70/TAPC:C70/BCP/Al | 1.0 × 103 (EQE), −4 V | - | ||
4P-NPB/glass/ITO/TPBi/C70/SnPc:C70/BCP/Al | 1.0 × 104 (EQE@780 nm), −10 V | R: 70 A/W; D*: 4 × 1012 Jones | |||
holes tunneling | SJ | 1996 [50] | ITO/DQ/Ag (or Mg) | Ag: 2.5 × 105 (IQE@600 nm), 20 V Mg: 1.0 × 105 (IQE@600 nm), 36 V | Response time: 10–20 s |
BHJ Type | Year [Ref] | Device | EQE (%) at Bias | Other Performances |
---|---|---|---|---|
Polymer/Organic 1:1 | 2010 [60] | ITO/PEDOT:PSS/P3HT:PCBM: Ir-125 (1:1:1)/Ca/Al | 7.6 × 102@800 nm, −5 V | R: 4.9 A/W; Broadband response |
2012 [66] | ITO/PEDOT:PSS/P3HT:PCBM:Q-Switch1 (1:1:1)/Ca/Al | 8.4 × 102@560 nm, −5 V | R: 4 A/W; Broadband response | |
ITO/PEDOT:PSS/P3HT:PCBM: Ir-125:Q-Switch1 (1:1:0.5:0.5)/Ca/Al | 5.5 × 103@560 nm, −3.7 V | R: 23 A/W; Broadband response | ||
2014 [61] | ITO/s-Au/P3HT:PCBM (1:1)/Al | 1.5 × 103@400 nm, −2 V | - | |
2017 [67] | ITO+PEIE/P3HT:PC61BM (1:1)/Al | 3.3 × 103@370 nm, −1 V | R: 14.2 A/W; D*: 1.0 × 1012 Jones; Time: 78 µs (rise), 87 µs (decay) | |
Polymer/Organic Higher than 1:1 | 2015 [62] | ITO/PEDOT:PSS/P3HT:PC71BM (100:1)/LiF/Al | 1.7 × 104@380 nm, −19 V | - |
2015 [79] | ITO/PEDOT:PSS/P3HT:PTB7-Th: PC71BM (50:50:1)/Al | 3.8 × 104@750 nm, −25 V | R: 229.5 A/W; D*:1.9 × 1013 Jones; Broadband response | |
2016 [73] | ITO/PFN/P3HT:ITIC (100:1)/Al | 2.3 × 103@625 nm, −15 V | R: 41.9 A/W; D*: 7.1 × 1012 Jones | |
2017 [91,92] | ITO/PFN-OX/P3HT:PC61BM (100:1, 4 μm)/Al | 8.2 × 103@650 nm, 60 V | D*: 7.7 × 1011 Jones@10 V; Narrowband response | |
2017 [74] | ITO/PEDOT:PSS/F8T2:PC71BM (100:4)/LiF/Al | 5.6 × 103@360 nm, −40 V | R: 15.9 A/W | |
2018 [93] | ITO/PFN-OX/P3HT:PTB7-Th: PC61BM (40:60:1,3 μm)/Al | 2.0 × 102@800 nm, −50 V | D*: >1.0 × 1011 Jones@10 V; LDR: 180 dB@550 nm, 30 V; Narrowband response | |
Polymer/Organic Lower than 1:1 | 2016 [64] | ITO/ZnO/PDPP3T:PC71BM (1:2)/Al | 1.4 × 105@680 nm, 0.5 V | D*: 6.3 × 1012 Jones; Decay time:0.27 s |
2017 [75] | ITO//Lys/ PBDTT-PP:PC71BM (1:2)/MoO3/Al | 5.0 × 103@730 nm, 1 V | R: 29.5 A/W; D*: 1.6 × 1015 Jones @735 nm; Time: 162 μs (rise), 7.9 ms (decay); LDR: 160 dB | |
Polymer/Inorganic | 2008 [62] | ITO/PEDOT:PSS/P3HT:PCBM:CdTe (1:1)/Ca/Al | 8.0 × 104@350 nm, −9 V | - |
2012 [8] | ITO/PEDOT:PSS/PVK:TPD-Si2/P3HT:ZnO/BCP/Al | 3.4 × 105@360 nm, −9 V | R: 1001 A/W; D*: 3.4 × 1015 Jones; Time: 25 µs (rise), 142 µs (decay) | |
2015 [76] | ITO/PEDOT:PSS/PVK:TPD-Si2/PDTP-FBT:ZnONPs (1:3)/BCP/Al | 2.5 × 102@800 nm, −4.5 V | R: 1.6 A/W; D*: 7.1 × 109 Jones | |
2016 [95] | ITO/SnO2/PEIE/PDTP-DFBT:PC71BM:PbS QDs (4 μm)/MoO3/Ag | 1.8 × 102@890 nm, −7 V | R: 1.3 A/W; D*: 8.0 × 1011 Jones; LDR: 110 dB; Time: 318 μs; Narrowband response | |
2016 [87] | ITO/PVK/P3HT:PC60BM:CdTe QDs (1:1, 3.5 μm)/BCP/Al | 2.0 × 102@660 nm, −6 V | D*: 7.3 × 1011 Jones; LDR: 110 dB; Narrowband response | |
Polymer/Insulator | 2015 [78] | Au/Y-TiOPc@PC/Au | 3.6 × 104@830 nm, 225 kV/cm | LDR: 7.1 dB@808 nm |
2016 [27] | ITO/Y-TiOPc NPs/m-TPD/Al | 3.5 × 105@780 nm, 15 V/µm | R: 2227 A/W; D*: 3.1 × 1014 Jones; Broadband response |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Liang, Q.; Wang, W.; Zhang, Y.; Li, G.; Ji, T.; Hao, Y.; Cui, Y. Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials 2018, 8, 713. https://doi.org/10.3390/nano8090713
Shi L, Liang Q, Wang W, Zhang Y, Li G, Ji T, Hao Y, Cui Y. Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials. 2018; 8(9):713. https://doi.org/10.3390/nano8090713
Chicago/Turabian StyleShi, Linlin, Qiangbing Liang, Wenyan Wang, Ye Zhang, Guohui Li, Ting Ji, Yuying Hao, and Yanxia Cui. 2018. "Research Progress in Organic Photomultiplication Photodetectors" Nanomaterials 8, no. 9: 713. https://doi.org/10.3390/nano8090713
APA StyleShi, L., Liang, Q., Wang, W., Zhang, Y., Li, G., Ji, T., Hao, Y., & Cui, Y. (2018). Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials, 8(9), 713. https://doi.org/10.3390/nano8090713