Atomistic Study of Mechanical Behaviors of Carbon Honeycombs
Abstract
:1. Introduction
2. Crystal Structure of Carbon Honeycomb
3. Molecular Dynamics Simulations
4. Results and Discussion
4.1. Uniaxial Tension
Strain–Stress Curve
4.2. Nanoindentation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120. [Google Scholar] [CrossRef]
- Lee, G.-H.; Cooper, R.C.; An, S.J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A.G.; Lee, C.; Crawford, B.; Oliver, W.; et al. High-strength chemical-vapor–deposited graphene and grain boundaries. Science 2013, 340, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Binghui, D.; Jie, H.; Hanxing, Z.; Sheng, L.; Emily, L.; Yunfeng, S.; Qing, P. The normal-auxeticity mechanical phase transition in graphene. 2D Mater. 2017, 4, 021020. [Google Scholar] [CrossRef] [Green Version]
- Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S. The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 2012, 72, 1459–1476. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Nayak, T.R.; Andersen, H.; Makam, V.S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.-L.R.; Ahn, J.-H.; Hong, B.H.; Pastorin, G.; et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011, 5, 4670–4678. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Blake, J.R.; Zan, R.; Anissimova, S.; Bangert, U.; Golovanov, A.P.; Morozov, S.V.; Geim, A.K.; Novoselov, K.S.; et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 2010, 97, 153102. [Google Scholar] [CrossRef] [Green Version]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H. Stability of single-wall silicon carbide nanotubes – molecular dynamics simulations. Comput. Mater. Sci. 2008, 43, 664–669. [Google Scholar] [CrossRef]
- Hong, S.; Lundstrom, T.; Ghosh, R.; Abdi, H.; Hao, J.; Jeoung, S.K.; Su, P.; Suhr, J.; Vaziri, A.; Jalili, N.; et al. Highly anisotropic adhesive film made from upside-down, flat, and uniform vertically aligned cnts. ACS Appl. Mater. Interfaces 2016, 8, 34061–34067. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Ji, W.; De, S. Mechanical properties of graphyne monolayers: A first-principles study. Phys. Chem. Chem. Phys. 2012, 14, 13385–13391. [Google Scholar] [CrossRef] [PubMed]
- Krainyukova, N.V.; Zubarev, E.N. Carbon honeycomb high capacity storage for gaseous and liquid species. Phys. Rev. Lett. 2016, 116, 055501. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, Y.; Zhong, C.; Zhang, Z.; Xie, Y.; Zhang, S. Electron and phonon properties and gas storage in carbon honeycombs. Nanoscale 2016, 8, 12863–12868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kutana, A.; Yang, Y.; Krainyukova, N.V.; Penev, E.S.; Yakobson, B.I. Nanomechanics of carbon honeycomb cellular structures. Carbon 2017, 113, 26–32. [Google Scholar] [CrossRef]
- Yang, Z.; Lan, G.; Ouyang, B.; Xu, L.-C.; Liu, R.; Liu, X.; Song, J. The thermoelectric performance of bulk three-dimensional graphene. Mater. Chem. Phys. 2016, 183, 6–10. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, F.; Bi, K.; Yang, J.; Chen, Y. Thermal transport properties of all-sp2 three-dimensional graphene: Anisotropy, size and pressure effects. Carbon 2017, 113, 212–218. [Google Scholar] [CrossRef]
- Pang, Z.; Gu, X.; Wei, Y.; Yang, R.; Dresselhaus, M.S. Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity. Nano Lett. 2016, 17, 179–185. [Google Scholar] [CrossRef]
- Meng, F.; Chen, C.; Hu, D.; Song, J. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling. J. Mech. Phys. Solids 2017, 109, 241–251. [Google Scholar] [CrossRef]
- Gu, X.; Pang, Z.; Wei, Y.; Yang, R. On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon 2017, 119, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Yue, S.; Zhao, J.; Ouyang, B.; Jing, Y. Atomistic simulations on the tensile deformation behaviors of three-dimensional graphene. Phys. Status Solidi 2018, 255, 1700680. [Google Scholar] [CrossRef]
- Karfunkel, H.R.; Dressler, T. New hypothetical carbon allotropes of remarkable stability estimated by mndo solid-state scf computations. J. Am. Chem. Soc. 1992, 114, 2285–2288. [Google Scholar] [CrossRef]
- Park, N.; Ihm, J. Electronic structure and mechanical stability of the graphitic honeycomb lattice. Phys. Rev. B 2000, 62, 7614–7618. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Jia, W.; Cao, Z.; Wang, L.; Fu, J.; Chi, X.; Gao, W.; Wang, L.-W. The analysis of a plane wave pseudopotential density functional theory code on a gpu machine. Comput. Phys. Commun. 2013, 184, 9–18. [Google Scholar] [CrossRef]
- Jia, W.; Fu, J.; Cao, Z.; Wang, L.; Chi, X.; Gao, W.; Wang, L.-W. Fast plane wave density functional theory molecular dynamics calculations on multi-gpu machines. J. Comput. Phys. 2013, 251, 102–115. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- O’Connor, T.C.; Andzelm, J.; Robbins, M.O. Airebo-m: A reactive model for hydrocarbons at extreme pressures. J. Chem. Phys. 2015, 142, 024903. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, X.; Huang, C.; Carter, E.A.; Lu, G. Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation. Model. Simul. Mater. Sci. Eng. 2010, 18, 075003. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, X.; Lu, G. Quantum mechanical simulations of nanoindentation of al thin film. Comput. Mater. Sci. 2010, 47, 769–774. [Google Scholar] [CrossRef]
- Li, J.; Van Vliet, K.J.; Zhu, T.; Yip, S.; Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 2002, 418, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Takayama, Y.; Kasada, R.; Sakamoto, Y.; Yabuuchi, K.; Kimura, A.; Ando, M.; Hamaguchi, D.; Tanigawa, H. Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation. J. Nucl. Mater. 2013, 442, S23–S27. [Google Scholar] [CrossRef]
Projected Contact Area (Å2) | Maximum Load (nN/ Å) | Hardness (GPa) |
---|---|---|
3689 | 1878.1 | 50.9 |
Contact Stiffness (nN/Å) | Reduced Modulus (GPa) | Young’s Moudulus (From Tension Simulation) (GPa) | Young’s Modulus (From Nanoindentation) (GPa) |
---|---|---|---|
228 ± 3 | 285 ± 4 | 551 ± 4 | 461 ± 9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Cao, Q.; Peng, Q.; Liu, S. Atomistic Study of Mechanical Behaviors of Carbon Honeycombs. Nanomaterials 2019, 9, 109. https://doi.org/10.3390/nano9010109
Wang H, Cao Q, Peng Q, Liu S. Atomistic Study of Mechanical Behaviors of Carbon Honeycombs. Nanomaterials. 2019; 9(1):109. https://doi.org/10.3390/nano9010109
Chicago/Turabian StyleWang, Huaipeng, Qiang Cao, Qing Peng, and Sheng Liu. 2019. "Atomistic Study of Mechanical Behaviors of Carbon Honeycombs" Nanomaterials 9, no. 1: 109. https://doi.org/10.3390/nano9010109
APA StyleWang, H., Cao, Q., Peng, Q., & Liu, S. (2019). Atomistic Study of Mechanical Behaviors of Carbon Honeycombs. Nanomaterials, 9(1), 109. https://doi.org/10.3390/nano9010109