Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Samples Preparation
2.2. General Procedure
2.3. Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) Studies
2.4. Surface Area Measurements and X-Ray Phase Analysis (XRD) Study
3. Results and Discussion
3.1. Investigation of Morphological Changes in Metal-Containing Substances under Microwave Treatment Conditions
3.2. Changes in the Morphology of Graphite in the Presence of Metal-Containing Substances under the Microwave Treatment Conditions
4. Conclusions
- -
- type 1: very weak MW-absorption with a maximum heating up to 200 °C (Al2O3, SiO2, WO3, ZnO, ZrO2, TiO2, CoO, Fe2O3, SnO2, CuO, Y2O3, MgO, Cr2O3, ZrO2-SiO2, Al-B, SiC, AlN, AlON, TiN, TiCN, Cu-W, W-Cu, W-Ni-Fe, Ni, Co);
- -
- type 2: weak MW-absorption or reflection of microwaves, a single spark discharge (Ag, Pt, Cu, Cu/C);
- -
- type 3: moderate MW-absorption, red-colored heat and/or red sparks (Re, W-C, V-C, Cr-C,);
- -
- type 4: intensive MW-absorption, spark discharges, glow of plasma, flame appearance with red-colored heat (Fe/C, Mo/C, Mo-Fe-C, WC, TiC, MoS2, W-V-C).
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Horikoshi, S.; Schiffmann, R.F.; Fukushima, J.; Serpone, N. Microwave Chemical and Materials Processing; Springer Nature Singapore Pte Ltd.: Singapore, 2018; ISBN 978-981-10-6466-1. [Google Scholar]
- de la Hoz, A.; Loupy, A. (Eds.) Microwaves in Organic Synthesis, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 9783527651313. [Google Scholar] [CrossRef]
- Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; ISBN 9783527623907. [Google Scholar]
- Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014, 47, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Serpone, N. Preparation of Heterogeneous Catalysts by a Microwave Selective Heating Method. In Microwaves in Catalysis: Methodology and Applications; Horikoshi, S., Serpone, N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Chapter 5; pp. 77–108. ISBN 9783527688111. [Google Scholar]
- Vivas-Castro, J.; Rueda-Morales, G.; Ortega-Cervantez, G.; Moreno-Ruiz, L.; Ortega-Aviles, M.; Ortiz-Lopez, J. Synthesis of Carbon Nanostructures by Microwave Irradiation. In Carbon Nanotubes—Synthesis, Characterization, Applications; Yellampalli, S., Ed.; InTech: London, UK, 2011; Chapter 3; pp. 47–60. ISBN 978-953-307-497-9. [Google Scholar]
- Guiotoku, M.; Rambo, C.; Maia, C.; Hotza, D. Synthesis of carbon-based materials by microwave-assisted hydrothermal process. In Microwave Heating; Chandra, U., Ed.; InTech: London, UK, 2011; Chapter 13; pp. 291–308. ISBN 978-953-307-573-0. [Google Scholar]
- Horikoshi, S.; Serpone, N. (Eds.) Microwaves in Nanoparticle Synthesis: Fundamentals and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 9783527648122. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Microwave-assisted synthesis of nanoparticles. In Microwave Chemistry; Cravotto, G., Carnaroglio, D., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2017; Chapter 14; pp. 248–269. ISBN 978-3-11-047993-5. [Google Scholar]
- Tsodikov, M.D.; Ellert, O.G.; Arapova, O.V.; Nikolaev, S.A.; Chistyakov, A.V.; Maksimov, Y.V. Benefit of Fe-containing catalytic systems for dry reforming of lignin to syngas under microwave radiation. Chem. Eng. Trans. 2018, 65, 367–372. [Google Scholar] [CrossRef]
- Kustov, L.M. Microwave-Stimulated Oil and Gas Processing. In Microwaves in Catalysis: Methodology and Applications; Horikoshi, S., Serpone, N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Chapter 14; pp. 281–300. ISBN 9783527688111. [Google Scholar]
- Varma, R.S. Solvent-free organic syntheses. Green Chem. 1999, 1, 43–55. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res. 2008, 41, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Ondruschka, B.; Bonrath, W.; Stuerga, D. Development and Design of Reactors in Microwave-Assisted Chemistry. In Microwaves in Organic Synthesis, 3rd ed.; de la Hoz, A., Loupy, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Chapter 2; pp. 57–103. ISBN 9783527651313. [Google Scholar]
- Horikoshi, S.; Serpone, N. Managing Microwave-Induced Hot Spots in Heterogeneous Catalytic Systems. In Microwaves in Catalysis: Methodology and Applications; Horikoshi, S., Serpone, N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Chapter 4; pp. 61–77. ISBN 9783527688111. [Google Scholar]
- Shore, G.; Yoo, W.-J.; Li, C.-J.; Organ, M.G. Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). Chem. Eur. J. 2010, 16, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Mathe, M. Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution. Int. J. Hydrogen Energy 2011, 36, 1960–1964. [Google Scholar] [CrossRef]
- Qi, S.; Yang, B. Methane aromatization using Mo-based catalysts prepared by microwave heating. Catal. Today 2004, 98, 639–645. [Google Scholar] [CrossRef]
- Kustov, L.M.; Sinev, I.M. Microwave activation of catalysts and catalytic processes. Russ. J. Phys. Chem. A 2010, 84, 1676–1694. [Google Scholar] [CrossRef]
- Ng, S.; Fairbridge, C.; Mutyala, S.; Liu, Y.; Bélanger, J.M.R.; Paré, J.R.J. Microwave-assisted conversion of ethane to ethylene. Appl. Petrochem. Res. 2013, 3, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Sinev, I.; Kardash, T.; Kramareva, N.; Sinev, M.; Tkachenko, O.; Kucherov, A.; Kustov, L.M. Interaction of vanadium containing catalysts with microwaves and their activation in oxidative dehydrogenation of ethane. Catal. Today 2009, 141, 300–305. [Google Scholar] [CrossRef]
- Tsodikov, M.V.; Konstantinov, G.I.; Chistyakov, A.V.; Arapova, O.V.; Perederii, M.A. Utilization of petroleum residues under microwave irradiation. Chem. Eng. J. 2016, 292, 315–320. [Google Scholar] [CrossRef]
- Liu, B.; Slocombe, D.R.; Wang, J.; Aldawsari, A.; Gonzalez-Cortes, S.; Arden, J.; Kuznetsov, V.L.; AlMegren, H.; AlKinany, M.; Xiao, T.; et al. Microwaves effectively examine the extent and type of coking over acid zeolite catalysts. Nat. Commun. 2017, 8, 514. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Münch, J.; Herrmann, R.; Schwieger, W. Effects of microwave radiation on one-step oxidation of benzene to phenol with nitrous oxide over Fe-ZSM-5 catalyst. Chem. Eng. J. 2006, 120, 99–105. [Google Scholar] [CrossRef]
- Jou, C.-J.G.; Lo, C.C. Using a microwave-induced method to regenerate platinum catalyst. Sustain. Environ. Res. 2017, 27, 279–282. [Google Scholar] [CrossRef]
- Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T. Heterogeneous Catalysis and Solid Catalysts. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, Germany, 2009. [Google Scholar]
- Gupta, M.; Wong Wai Leong, E. Microwaves and Metals; John Wiley & Sons (Asia) Pte Ltd.: Singapore, 2011; ISBN 9780470822746. [Google Scholar]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar] [CrossRef]
- Saitou, K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scr. Mater. 2006, 54, 875–879. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, D.; Jain, V.; Sharma, A.K. Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Mater. Manuf. Process. 2014, 30, 1–29. [Google Scholar] [CrossRef]
- Rodŕíguez-Reinoso, F.; Seṕulveda-Escribano, A. Carbon as Catalyst Support. In Carbon Materials for Catalysis; Serp, P., Figueiredo, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; Chapter 4; pp. 131–155. ISBN 9780470403709. [Google Scholar]
- Kim, J.; McNamara, N.D.; Hicks, J.C. Catalytic activity and stability of carbon supported V oxides and carbides synthesized via pyrolysis of MIL-47 (V). Appl. Catal. A 2016, 517, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-Y.; Hu, H.; Wang, Y.; Chen, H.; Lou, X.W.D. Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angew. Chem. Int. Ed. Engl. 2015, 127, 7503–7506. [Google Scholar] [CrossRef]
- Gotterbarm, K.; Späth, F.; Bauer, U.; Bronnbauer, C.; Steinrück, H.-P.; Papp, C. Reactivity of Graphene-Supported Pt Nanocluster Arrays. ACS Catal. 2015, 5, 2397–2403. [Google Scholar] [CrossRef]
- Cui, S.-C.; Sun, X.-Z.; Liu, J.-G. Photo-reduction of CO2 Using a Rhenium Complex Covalently Supported on a Graphene/TiO2 Composite. ChemSusChem 2016, 9, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xu, K.; Nguyen, L.; Qiao, M.; Tao, F.F. Preparation and Catalysis of Carbon-Supported Iron Catalysts for Fischer-Tropsch Synthesis. ChemCatChem 2012, 4, 1498–1511. [Google Scholar] [CrossRef]
- Wang, Q.-N.; Shi, L.; Lu, A.-H. Highly Selective Copper Catalyst Supported on Mesoporous Carbon for the Dehydrogenation of Ethanol to Acetaldehyde. ChemCatChem 2015, 7, 2846–2852. [Google Scholar] [CrossRef]
- Patel, S.B.; Vasava, D.V. Carbon Nitride-Supported Silver Nanoparticles: Microwave- Assisted Synthesis of Propargylamine and Oxidative C-C Coupling Reaction. ChemistrySelect 2018, 3, 471–480. [Google Scholar] [CrossRef]
- Pentsak, E.O.; Cherepanova, V.A.; Ananikov, V.P. Dynamic Behavior of Metal Nanoparticles in Pd/C and Pt/C Catalytic Systems under Microwave and Conventional Heating. ACS Appl. Mater. Interfaces 2017, 9, 36723–36732. [Google Scholar] [CrossRef] [PubMed]
- Pentsak, E.O.; Gordeev, E.G.; Ananikov, V.P. Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation. ACS Catal. 2014, 4, 3806–3814. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Basak, T.; Srinivasan, R. Microwave heating characteristics of graphite based powder mixtures. Int. Commun. Heat Mass Transf. 2013, 48, 22–27. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Wu, Y. Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. Part B 2011, 42, 326–329. [Google Scholar] [CrossRef]
- Severin, N.; Kirstein, S.; Sokolov, I.M.; Rabe, J.P. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009, 9, 457–461. [Google Scholar] [CrossRef]
- Lukas, M.; Meded, V.; Vijayaraghavan, A.; Song, L.; Ajayan, P.M.; Fink, K.; Wenzel, W.; Krupke, R. Catalytic subsurface etching of nanoscale channels in graphite. Nat. Commun. 2013, 4, 1379. [Google Scholar] [CrossRef] [Green Version]
- Sinaiskii, M.A.; Samokhin, A.V.; Alekseev, N.V.; Tsvetkov, Y.V. Extended characteristics of dispersed composition for nanopowders of plasmachemical synthesis. Nanotechnol. Russ. 2016, 11, 805–814. [Google Scholar] [CrossRef]
- Samokhin, A.; Alekseev, N.; Sinayskiy, M.; Astashov, A.; Kirpichev, D.; Fadeev, A.; Tsvetkov, Y.; Kolesnikov, A. Nanopowders Production and Micron-Sized Powders Spheroidization in DC Plasma Reactors. In Powder Technology; Cavalheiro, A.A., Ed.; IntechOpen: London, UK, 2018; Chapter 1. [Google Scholar]
- Samokhin, A.V.; Alexeev, N.V.; Vodopyanov, A.V.; Mansfeld, D.A.; Tsvetkov, Y.V. Metal Oxide Nanopowder Production by Evaporation-Condensation Using a Focused Microwave Radiation at a Frequency of 24 GHz. J. Nanotechnol. Eng. Med. 2015, 6, 011008. [Google Scholar] [CrossRef]
- Pentsak, E.O.; Kashin, A.S.; Polynski, M.V.; Kvashnina, K.O.; Glatzel, P.; Ananikov, V.P. Spatial imaging of carbon reactivity centers in Pd/C catalytic systems. Chem. Sci. 2015, 6, 3302–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedykh, A.E.; Gordeev, E.G.; Pentsak, E.O.; Ananikov, V.P. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials. Phys. Chem. Chem. Phys. 2016, 18, 4608–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentsak, E.O.; Ananikov, V.P. Modulation of chemical interactions across graphene layers and metastable domains in carbon materials. Mendeleev Commun. 2014, 24, 327–328. [Google Scholar] [CrossRef]
- Kachala, V.V.; Khemchyan, L.L.; Kashin, A.S.; Orlov, N.V.; Grachev, A.A.; Zalesskiy, S.S.; Ananikov, V.P. Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russ. Chem. Rev. 2013, 82, 648–685. [Google Scholar] [CrossRef]
- Kashin, A.S.; Ananikov, V.P. A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. Russ. Chem. Bull. Int. Ed. 2011, 60, 2602–2607. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Tiwari, S.K.; Mishra, P. Microwave sintering of W–Ni–Fe alloy. Scr. Mater. 2007, 56, 5–8. [Google Scholar] [CrossRef]
- Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave Sintering of Refractory Metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys. J. Microw. Power 2010, 44, 28–44. [Google Scholar] [CrossRef]
- Mellodge, P.; Folz, D.; Clark, D.; West, J. Heating Rates of Silicon Carbide in a Microwave Field. In Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings; Tandon, R., Wereszczak, A., Lara-Curzio, E., Eds.; Wiley: Hoboken, NJ, USA, 2008; Volume 27, Chapter 48. [Google Scholar] [CrossRef]
- Sugawara, H.; Kashimura, K.; Hayashi, M.; Ishihara, S.; Mitani, T.; Shinohara, N. Behavior of microwave-heated silicon carbide particles at frequencies of 2.0–13.5 GHz. Appl. Phys. Lett. 2014, 105, 034103. [Google Scholar] [CrossRef]
Sample | Heating a | Morphology Changes of Initial Samples after MW b | Morphology Changes of Graphite after MW Treatment with the Samples c |
---|---|---|---|
Pt | type 2 | + | + |
Re | type 3 | +/- | + |
Ag | type 2 | + | + |
Co | type 1 | - | + |
Fe/C | type 4 | + | - |
Ni | type 1 | - | + |
Cu | type 2 | - | + |
Cu/C | type 2 | - | + |
W-Ni-Fe (90-7-3%) | type 1 | - | + |
Mo/C | type 4 | + | - |
Mo-Fe-C | type 4 | + | + |
Cu-W (9:1) | type 1 | - | + |
W-Cu (1:1) | type 1 | - | + |
WC | type 4 | +/- | + |
TiN | type 1 | - | + |
TiC | type 4 | - | + |
MoS2 | type 4 | + | - |
W-C | type 3 | - | +/- |
V-C | type 3 | - | +/- |
Cr-C | type 3 | - | + |
W-V-C | type 4 | + | + |
WO3 | type 1 | - | + |
ZnO | type 1 | - | +/- |
TiO2 | type 1 | - | + |
Fe2O3 | type 1 | - | +/- |
CuO | type 1 | - | + |
Y2O3 | type 1 | - | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pentsak, E.O.; Cherepanova, V.A.; Sinayskiy, M.A.; Samokhin, A.V.; Ananikov, V.P. Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology. Nanomaterials 2019, 9, 19. https://doi.org/10.3390/nano9010019
Pentsak EO, Cherepanova VA, Sinayskiy MA, Samokhin AV, Ananikov VP. Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology. Nanomaterials. 2019; 9(1):19. https://doi.org/10.3390/nano9010019
Chicago/Turabian StylePentsak, Evgeniy O., Vera A. Cherepanova, Mikhail A. Sinayskiy, Andrey V. Samokhin, and Valentine P. Ananikov. 2019. "Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology" Nanomaterials 9, no. 1: 19. https://doi.org/10.3390/nano9010019
APA StylePentsak, E. O., Cherepanova, V. A., Sinayskiy, M. A., Samokhin, A. V., & Ananikov, V. P. (2019). Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology. Nanomaterials, 9(1), 19. https://doi.org/10.3390/nano9010019