(Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties
Abstract
:1. Introduction
2. Zinc Oxide Nanoparticles
2.1. Synthesis Methods of ZnO NPs
2.2. Commercial Grade ZnO NPs
3. Production of (Bio)Polymer/ZnO Nanocomposites
4. Barrier Properties of (Bio)Polymer/ZnO Nanocomposites
5. Mechanical Properties of (Bio)Polymer/ZnO Nanocomposites
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rossi, M.; Cubadda, F.; Dini, L.; Terranova, M.L.; Aureli, F.; Sorbo, A.; Passeri, D. Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol. 2014, 40, 127–148. [Google Scholar] [CrossRef] [Green Version]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the food industry–Recent developments, risks and regulation. Trends Food Sci. Technol. 2012, 24, 30–46. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Cimmino, S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011, 36, 1766–1782. [Google Scholar] [CrossRef]
- Weiss, J.; Takhistov, P.; McClements, D.J. Functional Materials in Food Nanotechnology. J. Food Sci. 2006, 71, R107–R116. [Google Scholar] [CrossRef] [Green Version]
- Global Nanotechnology Market 2018–2024: Market is Expected to Exceed US$ 125 Billion. Available online: https://www.prnewswire.com/news-releases/global-nanotechnology-market-2018-2024-market-is-expected-to-exceed-us-125-billion-300641054.html (accessed on 4 September 2019).
- Bernardes, P.C.; de Andrade, N.J.; Soares, N.D.F.F. Nanotechnology in the food industry. Biosci. J. 2014, 30, 1919–1932. [Google Scholar]
- Bradley, E.L.; Castle, L.; Chaudhry, Q. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci. Technol. 2011, 22, 604–610. [Google Scholar] [CrossRef]
- Yousefi, H.; Su, H.-M.; Imani, S.M.; Alkhaldi, K.M.; Filipe, C.D.; Didar, T.F. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sens. 2019, 4, 808–821. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Cacciotti, I.; Mori, S.; Cherubini, V.; Nanni, F. Eco-sustainable systems based on poly (lactic acid), diatomite and coffee grounds extract for food packaging. Int. J. Biol. Macromol. 2018, 112, 567–575. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces 2019, 177, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Lloret, E.; Picouet, P.A.; Trbojevich, R.; Fernandez, A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012, 24, 19–29. [Google Scholar] [CrossRef]
- Horner, S.R.; Mace, C.R.; Rothberg, L.J.; Miller, B.L. A proteomic biosensor for enteropathogenic E. coli. Biosens. Bioelectron. 2006, 21, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Torley, P.; Halley, P.J. Emerging biodegradable materials: Starch-and protein-based bio-nanocomposites. J. Mater. Sci. 2008, 43, 3058–3071. [Google Scholar] [CrossRef]
- Arora, A.; Padua, G.W. Nanocomposites in food packaging. J. Food Sci. 2010, 75, R43–R49. [Google Scholar] [CrossRef]
- Cacciotti, I.; Fortunati, E.; Puglia, D.; Kenny, J.M.; Nanni, F. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly (lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydr. Polym. 2014, 103, 22–31. [Google Scholar] [CrossRef]
- Arshak, K.; Adley, C.; Moore, E.; Cunniffe, C.; Campion, M.; Harris, J. Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens. Actuators B Chem. 2007, 126, 226–231. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent developments in food packaging based on nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Ahmed, J.; Al Hazza, A.; Jacob, H.; Joseph, A. Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide-based nanocomposite films. Int. J. Biol. Macromol. 2017, 101, 1041–1050. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Ariffin, F.; Mahmud, S.; Alias, A.K.; Hosseini, S.F.; Ahmad, M. Improving the physical and protective functions of semolina films by embedding a blend nanofillers (ZnO-nr and nano-kaolin). Food Packag. Shelf Life 2017, 12, 66–75. [Google Scholar] [CrossRef]
- Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49, 3471–3482. [Google Scholar] [CrossRef]
- Díez-Pascual, A.; Díez-Vicente, A. Poly (3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int. J. Mol. Sci. 2014, 15, 10950–10973. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Diez-Vicente, A.L. ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, R.; Rajeswari, N. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polym. Adv. Technol. 2017, 28, 20–27. [Google Scholar] [CrossRef]
- Ejaz, M.; Arfat, Y.A.; Mulla, M.; Ahmed, J. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packag. Shelf Life 2018, 15, 113–121. [Google Scholar] [CrossRef]
- Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int. J. Biol. Macromol. 2016, 88, 254–262. [Google Scholar] [CrossRef]
- Ahmed, J.; Arfat, Y.A.; Al-Attar, H.; Auras, R.; Ejaz, M. Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low-density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles. Food Packag. Shelf Life 2017, 13, 20–26. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 2017, 7, 207. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, B.; Dhar, S.; Gondorf, A.; Spasova, M. Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol–gel route. Surf. Sci. 2012, 606, L13–L17. [Google Scholar] [CrossRef]
- Erol, A.; Okur, S.; Comba, B.; Mermer, Ö.; Arıkan, M. Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process. Sens. Actuators B Chem. 2010, 145, 174–180. [Google Scholar] [CrossRef]
- Tokumoto, M.S.; Pulcinelli, S.H.; Santilli, C.V.; Briois, V. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol−gel route. J. Phys. Chem. B 2003, 107, 568–574. [Google Scholar] [CrossRef]
- Chu, S.-Y.; Yan, T.-M.; Chen, S.-L. Characteristics of sol-gel synthesis of ZnO-based powders. J. Mater. Sci. Lett. 2000, 19, 349–352. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Chen, N.; Wang, H.; Du, G.; Suen, A.Y. Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method. J. Sol Gel Sci. Technol. 2012, 62, 252–258. [Google Scholar] [CrossRef]
- Cheetham, A.K.; Mellot, C.F. In Situ Studies of the Sol−Gel Synthesis of Materials. Chem. Mater. 1997, 9, 2269–2279. [Google Scholar] [CrossRef]
- Niederberger, M. Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 2007, 40, 793–800. [Google Scholar] [CrossRef]
- Liu, Y.; Morishima, T.; Yatsui, T.; Kawazoe, T.; Ohtsu, M. Size control of sol–gel-synthesized ZnO quantum dots using photo-induced desorption. Nanotechnology 2011, 22, 215605. [Google Scholar] [CrossRef]
- Nipane, D.; Thakare, S.; Khati, N. ZnO nanoparticle by sol-gel and its UV application in cosmetics formulation. Int. J. Knowl. Eng. 2012, 3, 168–169. [Google Scholar]
- Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 2013, 19, 99–105. [Google Scholar] [CrossRef]
- Khan, M.F.; Ansari, A.H.; Hameedullah, M.; Ahmad, E.; Husain, F.M.; Zia, Q.; Baig, U.; Zaheer, M.R.; Alam, M.M.; Khan, A.M. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Sci. Rep. 2016, 6, 27689. [Google Scholar] [CrossRef]
- Vafaee, M.; Ghamsari, M.S. Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater. Lett. 2007, 61, 3265–3268. [Google Scholar] [CrossRef]
- Köse, H.; Karaal, Ş.; Aydın, A.O.; Akbulut, H. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol–gel method. J. Power Sources 2015, 295, 235–245. [Google Scholar]
- Djurisic, A.B.; Chen, X.Y.; Leung, Y.H. Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent Pat. Nanotechnol. 2012, 6, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Innes, B.; Tsuzuki, T.; Dawkins, H.; Dunlop, J.; Trotter, G.; Nearn, M.; McCormick, P. Nanotechnology and the cosmetic chemist. Cosmet. Aeorosol Toilet. Aust. 2002, 15, 10–24. [Google Scholar]
- Suslick, K.S. Sonochemistry. Science 1990, 247, 1439–1445. [Google Scholar] [CrossRef]
- Askarinejad, A.; Alavi, M.A.; Morsali, A. Sonochemically assisted synthesis of ZnO nanoparticles: A novel direct method. Iran. J. Chem. Chem. Eng. 2011, 30, 75–81. [Google Scholar]
- Kim, B.-H.; Kim, J.-H.; Kwon, I.-H.; Song, M.-Y. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method. Ceram. Int. 2007, 33, 837–841. [Google Scholar] [CrossRef]
- Balint, I.; You, Z.; Aika, K.-I. Morphology and oxide phase control in the microemulsion mediated synthesis of barium stabilized alumina nanoparticles. Phys. Chem. Chem. Phys. 2002, 4, 2501–2503. [Google Scholar] [CrossRef]
- Han, D.; Yang, H.; Shen, C.; Zhou, X.; Wang, F. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol. 2004, 147, 113–116. [Google Scholar] [CrossRef]
- Lu, C.-H.; Chang, H.-H.; Lin, Y.-K. Preparation and characterization of nanosized lithium cobalt oxide powders for lithium-ion batteries. Ceram. Int. 2004, 30, 1641–1645. [Google Scholar] [CrossRef]
- Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology; William Andrew Publishing: New York, NY, USA, 2001. [Google Scholar]
- Rajamathi, M.; Seshadri, R. Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr. Opin. Solid State Mater. Sci. 2002, 6, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.; Trompeta, A.-F.; Markakis, V. Manufacturing nanomaterials: From research to industry. Manuf. Rev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Rajput, N. Methods of preparation of nanoparticles—A review. Int. J. Adv. Eng. Technol. 2015, 7, 1806. [Google Scholar]
- Mantzaris, N.V. Liquid-phase synthesis of nanoparticles: Particle size distribution dynamics and control. Chem. Eng. Sci. 2005, 60, 4749–4770. [Google Scholar] [CrossRef]
- Pimentel, A.; Nunes, D.; Duarte, P.; Rodrigues, J.; Costa, F.; Monteiro, T.; Martins, R.; Fortunato, E. Synthesis of long ZnO nanorods under microwave irradiation or conventional heating. J. Phys. Chem. C 2014, 118, 14629–14639. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, W. Chapter 8-Microwave-assisted Inorganic Syntheses. In Modern Inorganic Synthetic Chemistry; Xu, R., Pang, W., Huo, Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Naveed Ul Haq, A.; Nadhman, A.; Ullah, I.; Mustafa, G.; Yasinzai, M.; Khan, I. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater. 2017, 2017, 8510342. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; De Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A.; Andrade, N.J. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Lepot, N.; Van Bael, M.; Van den Rul, H.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Synthesis of ZnO nanorods from aqueous solution. Mater. Lett. 2007, 61, 2624–2627. [Google Scholar] [CrossRef]
- Elen, K.; Van den Rul, H.; Hardy, A.; Van Bael, M.K.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Hydrothermal synthesis of ZnO nanorods: A statistical determination of the significant parameters in view of reducing the diameter. Nanotechnology 2009, 20, 055608. [Google Scholar] [CrossRef]
- Jalal, R.; Goharshadi, E.K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 2010, 121, 198–201. [Google Scholar] [CrossRef]
- Bhadra, P.; Mitra, M.; Das, G.; Dey, R.; Mukherjee, S. Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater. Sci. Eng. C 2011, 31, 929–937. [Google Scholar] [CrossRef]
- Kumar, V.; Wariar, P.; Prasad, V.; Koshy, J. A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method. Mater. Lett. 2011, 65, 2059–2061. [Google Scholar] [CrossRef]
- Lim, S.K.; Hwang, S.-H.; Kim, S.; Park, H. Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens. Actuators B Chem. 2011, 160, 94–98. [Google Scholar] [CrossRef]
- Elen, K.; Kelchtermans, A.; Van den Rul, H.; Peeters, R.; Mullens, J.; Hardy, A.; Van Bael, M. Comparison of two novel solution-based routes for the synthesis of equiaxed ZnO nanoparticles. J. Nanomater. 2011, 2011, 390621. [Google Scholar] [CrossRef]
- Šarić, A.; Štefanić, G.; Dražić, G.; Gotić, M. Solvothermal synthesis of zinc oxide microspheres. J. Alloys Compd. 2015, 652, 91–99. [Google Scholar] [CrossRef]
- Ghosh, S.; Majumder, D.; Sen, A.; Roy, S. Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature. Mater. Lett. 2014, 130, 215–217. [Google Scholar] [CrossRef]
- Laurenti, M.; Garino, N.; Porro, S.; Fontana, M.; Gerbaldi, C. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloys Compd. 2015, 640, 321–326. [Google Scholar] [CrossRef]
- Anand, V.; Srivastava, V.C. Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization. J. Alloys Compd. 2015, 636, 288–292. [Google Scholar] [CrossRef]
- Meliorum Technologies, Inc. Available online: https://www.meliorum.com/zinc-oxide-nanoparticles (accessed on 4 September 2019).
- Sukgyung AT Co., Ltd. Available online: http://www.sukgyung.com/1-3cosmetic-2zinc.php?dept3=8&2 (accessed on 4 September 2019).
- US Research Nanomaterials, Inc. Available online: https://www.us-nano.com/?gclid=EAIaIQobChMIlIW85cSO2gIVBbcbCh1CQwF9EAMYAiAAEgLkJvD_BwE (accessed on 4 September 2019).
- SkySpring Nanomaterials, Inc. Available online: https://www.ssnano.com/nanopowders---micron-powders (accessed on 4 September 2019).
- Stanford Advanced Materials. Available online: http://www.samaterials.com/zinc/1200-zinc-oxide-powder-zno-powder.html (accessed on 4 September 2019).
- Ultrananotech Materials Beyond Imagination. Available online: http://ultrananotec.com/products/metal-oxide-nanopowder/metal-oxide-nanopowders (accessed on 4 September 2019).
- Advanced Nano Products. Available online: http://www.anapro.com/eng/product/uv_blocker_zinc_oxide_powder_slurry.html (accessed on 4 September 2019).
- mkNANO. Available online: https://mknano.com/Nanoparticles/Single-Element-Oxides (accessed on 4 September 2019).
- Nanophase™ Nanoengineered Products. Available online: http://nanophase.com/products/zinc-oxide/ (accessed on 4 September 2019).
- Inframat® Advanced Materials™. Available online: http://www.advancedmaterials.us/30N-0801.htm (accessed on 4 September 2019).
- TECNAN. Available online: https://tecnan-nanomat.es/nanoparticulas-en-polvo/ (accessed on 4 September 2019).
- Micronisers. Available online: http://www.micronisers.com/products/additives-intermediates/powders/nanosun-zinc-oxide-p99-30/ (accessed on 4 September 2019).
- EPRUI Nanoparticles & Microspheres Co. Ltd. Available online: https://www.nanoparticles-microspheres.com/Products/ZnO-nanoparticles.html (accessed on 4 September 2019).
- American Elements. Available online: https://www.americanelements.com/zinc-oxide-nanoparticle-dispersion-1314-13-2 (accessed on 4 September 2019).
- Linari NanoTech. Available online: http://linaribiomedical.com/index.php/nanoparticles/zno-colloid/zno-deg-detail (accessed on 4 September 2019).
- Sigma Aldrich®. Available online: https://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=18010478 (accessed on 4 September 2019).
- NYACOL® Nano Technologies, Inc. Available online: http://www.nyacol.com/products/zinc-oxide/ (accessed on 4 September 2019).
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef]
- Riccardi, C.; Zanini, S.; Tassetti, D. A Polymeric Film Coating Method on a Substrate by Depositing and Subsequently Polymerizing a Monomeric Composition by Plasma Treatment. Patent WO2014191901 A1, 4 December 2014. [Google Scholar]
- Ravichandran, K.; Praseetha, P.K.; Arun, T.; Gobalakrishnan, S. Chapter 6—Synthesis of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 141–168. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 2017, 11, 106–114. [Google Scholar] [CrossRef]
- Beak, S.; Kim, H.; Song, K.B. Characterization of an Olive Flounder Bone Gelatin-Zinc Oxide Nanocomposite Film and Evaluation of Its Potential Application in Spinach Packaging. J. Food Sci. 2017, 82, 2643–2649. [Google Scholar] [CrossRef]
- Polat, S.; Fenercioğlu, H.; Güçlü, M. Effects of metal nanoparticles on the physical and migration properties of low density polyethylene films. J. Food Eng. 2018, 229, 32–42. [Google Scholar] [CrossRef]
- Polat, S.; Fenercioglu, H.; Unal Turhan, E.; Guclu, M. Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. J. Food Process. Preserv. 2018, 42, e13541. [Google Scholar] [CrossRef]
- Lange, J.; Wyser, Y. Recent innovations in barrier technologies for plastic packaging—A review. Packag. Technol. Sci. 2003, 16, 149–158. [Google Scholar] [CrossRef]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Smolander, M.; Chaudhry, Q. Nanotechnologies in Foods; RSC Publishing: Cambridge, UK, 2010; pp. 86–101. [Google Scholar]
- Avella, M.; De Vlieger, J.J.; Errico, M.E.; Fischer, S.; Vacca, P.; Volpe, M.G. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 2005, 93, 467–474. [Google Scholar] [CrossRef]
- Available online: http://www.polyprint.com/flexographic-otr.htm (accessed on 29 September 2019).
- Available online: http://en.labthink.com/en-us/literatures/gas-transmission-rate-permeance-and-permeability-coefficient-application-guide.html (accessed on 29 September 2019).
- Food Packaging Permeability Behaviour: A Report. Int. J. Polym. Sci. 2012, 2012, 302029. [CrossRef]
- Patricia Miranda, S.; Garnica, O.; Lara-Sagahon, V.; Cárdenas, G. Water vapor permeability and mechanical properties of chitosan composite films. J. Chil. Chem. Soc. 2004, 49, 173–178. [Google Scholar] [CrossRef]
- Alebooyeh, R.; MohammadiNafchi, A.; Jokr, M. The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films. J. Chem. Health Risks 2018, 2. [Google Scholar] [CrossRef]
- Marra, A.; Rollo, G.; Cimmino, S.; Silvestre, C. Assessment on the effects of ZnO and Coated ZnO particles on iPP and PLA properties for application in food packaging. Coatings 2017, 7, 29. [Google Scholar] [CrossRef]
Method | Materials | Size (nm) | Shape | Reference |
---|---|---|---|---|
Hydrothermal | Zinc acetate dihydrate, polyvinylpyrrolidone (PVP) | L: 5000, D: 50–200 | Nanorods | [60] |
Zinc acetate dihydrate, zinc chloride, sodium hydroxide | 60 | Nanorods | [61] | |
Microwave decomposition | 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [bmim][NTf2], zinc acetate dehydrate | 37–47 | Sphere | [62] |
Co-precipitation | Zinc acetate, double distilled water | D: 30–60, L: 80 | Nanorods | [63] |
Tetrahydrated zinc nitrate, ammonium hydroxide | 20–40 | Crystals | [64] | |
Micro-emulsion | Zinc acetate dihydrate, ethylbenzene acid sodium salt (EBS), xylene, dodecylbenzene sulfonic acid sodium salt (DBS), ethanol and hydrazine | DDBS: 300 DEBS: 80 | Nanorods | [65] |
Zn(AOT)2, heptane, diethyl oxalate, chloroform, methanol | 10–20 | Quasispherical | [66] | |
Solvothermal | Zinc acetate dihydrate, polyethylene glycol, absolute ethanol | 10–20 | Quasispherical | [66] |
Triethanolamine, zinc acetylacetonate monohydrate, 1-octanol, and absolute ethanol | Lrod ~100 Dsphere ~20 | Rods (ethanol without triethanolamine—TEA) spherical (ethanol with TEA) | [67] | |
Sol-gel | Oxalic acid dihydrate, zinc acetate dihydrate, hydrochloric acid, ammonia, and absolute ethanol | 20 | Spherical | [39] |
Sonochemical | Potassium hydroxide, zinc nitrate hexahydrate, and cetyltrimethylammonium bromide | 200–400 wide, a few nm thick | Flakes | [68] |
Chemical vapor deposition | Zinc acetate dihydrate, ethanol | Average D: 90 and L: 564 | Nanorods | [69] |
Electrochemical | Oxalic acid dihydrate purified, Zn electrode, potassium chloride, nitric acid, and sodium hydroxide | Dspherical: 50–100 Lcylindrical: 150–200 | Spherical and cylindrical particles | [70] |
Sr. No. | Company | Physical Characteristics | Phase | Country | Reference |
---|---|---|---|---|---|
1 | Meliorum Technologies Inc. | 10 nm | Powder, aqueous, dispersion | United States | [71] |
2 | Sukgyung AT Co., Ltd. | 10–20 nm, 20–40 nm | Powder | Korea, Republic | [72] |
3 | US Research Nanomaterials, Inc. | 10–30, 18, 20, 35–45, 30–40, 50–80, 80–200 nm | Powder, dispersion | United States | [73] |
4 | SkySpring Nanomaterials, Inc. | 10–30 nm, <30 nm, 200 nm, 200–800 nm | Powder | United States | [74] |
5 | Stanford Advanced Materials | 17–27 nm, 30–50 nm, 70–90 nm | Powder | United States | [75] |
6 | Ultrananotech | ≥20 nm | Powder | India | [76] |
7 | Advanced Nano Products | 20–30 nm | Powder, emulsion | Korea, Republic | [77] |
8 | MKnano | 20, 30, 40, 50–150 nm | Powder | Canada | [78] |
9 | Nanophase™ Technologies | 20, 40, 60 nm (elongated) | Powder, dispersion | United States | [79] |
10 | Inframat® Advanced Materials™ | ~30 nm | Powder | United States | [80] |
11 | TECNAN | 30–40 nm | Powder | Spain | [81] |
12 | Micronisers | 30–50 nm | Powder | Australia | [82] |
13 | EPRUI Nanoparticles & Microspheres Co. Ltd. | 30, 50, 200 nm (nearly spherical) | Powder | China | [83] |
14 | American Elements | ≤40 nm | Powder, dispersion | United States | [84] |
15 | Linari NanoTech | 45 ± 5 nm | Suspension | Italy | [85] |
16 | Sigma Aldrich® | <50 nm, <100 nm, <110 nm, <130 nm | Powder, dispersion | United States | [86] |
17 | Nyacol® Nanotechnologies, Inc. | 50, 125 nm | Suspension | United States | [87] |
Characteristics-ZnO NPs | Supplier | Polymer | Biopolymer | Supplier | Incorporation Method | Reference |
---|---|---|---|---|---|---|
Particle size <100 nm | Sigma Aldrich (St. Louis, MO, USA) | Linear low density polyethylene (LLDPE) | - | Equate Petrochemical Co. (Kuwait) | Extrusion blowing method | [28] |
Particles size 100–500 nm | Pylote SAS in Dremil-Lafage, France | - | Poly(lactic acid) (PLA) | NatureWorks LLC (USA) | Twin-screw extrusion | [27] |
Rod-like particles, ZnO content: 96.2 ± 0.5% | Umicore, Belgium | - | PLA | NatureWorks | Melt compounding | [22] |
Average particle size <25 nm | Sigma Aldrich | - | Chitosan | Sigma Aldrich | NA | [91] |
Particle size <100 nm | Sigma Aldrich | - | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) | Goodfellow Corp. | Solution casting | [23] |
Particle size <100 nm | Sigma Aldrich | - | Poly(3-hydroxybutyrate) (PHB) | Biomer Ltd. (Krailling, Germany) | Solution casting | [24] |
Particle size 60 nm, spherical in shape | Co-precipitation method using zinc acetate and sodium hydroxide precursors | - | Poly(butylene adipate-co-terephthalate) (PBAT) | BASF Ltd., Japan | Solution casting | [25] |
Nanopowder, <50 nm particle size | Sigma Aldrich Co. (St. Louis, MO, USA) | Olive flounder (Paralichthys olivaceus) bones | - | A seafood restaurant in Daejeon, Korea | NA | [92] |
Particle size 30 nm | Umicore, Belgium | - | PLA Ingeo™ 4043D | NatureWorks LLC (Minnetonka, MN, USA) | Solvent casting | [20] |
An average particle diameter of 70 nm | Pars Nanonasb (Persia) | Low density polyethylene (LDPE) | - | Petkim (Turkey) | Melt blending method | [93] |
An average particle diameter of 70 nm | Pars Nanonasb (Persia) | Polypropylene (PP) | - | Borealis (Vienna, Austria) | Melt blending method | [94] |
Nanorods | Catalyst-free combust oxidized mesh process | - | Semolina flour | Local market in Tehran, Iran | Solvent casting | [21] |
Purity = 99.9% | MaiKun Industrial Co., Ltd. (Shanghai, China) | - | PLA | NatureWorks LLC (Lincoln, NE, USA) | Solvent volatilizing method | [29] |
Particle size <100 nm | Umicore, Belgium | Bovine skin gelatin type-B (BSG) | - | Sigma-Aldrich (St. Louis, MO, USA) | Solution casting | [26] |
ZnO NPs Based Composites | Oxygen Transmission Rate (OTR)/Oxygen Permeability (PO2) | Water Vapor Permeability (WVP) | Carbon Dioxide Permeability (PCO2) | Reference |
---|---|---|---|---|
LLDPE films reinforced with ZnO NPs | OTR decreased by 23.2% for 10 wt% ZnO incorporation | NA | NA | [28] |
PLA/ZnO biocomposite | For 1 wt% ZnO incorporation, oxygen permeability (PO2) decreased by 18%. Then there is no further decrease for addition up to 5 wt% | For 1 wt% ZnO incorporation, water vapor permeability (WVP) increased by 16%. Then there is no change for higher ZnO content. | For 1 wt% ZnO incorporation, carbon dioxide (CO2) permeability decreased by about 17%. Then there is no further decrease for higher ZnO content. | [27] |
PLA-ZnO nanocomposite films | NA | WVP decreased on increasing ZnO NP concentration from 1 to 3 wt% | NA | [22] |
Carboxymethyl cellulose-chitosan-ZnO NPs nanocomposites | NA | WVP decreased on increasing ZnO NP concentration up to 2 wt% | NA | [91] |
ZnO-reinforced PHBV bionanocomposites | PO2 decreased up to 35% with 4 wt% ZnO loading | NA | NA | [23] |
ZnO/PHB bionanocomposites | PO2 decreased by about 53% at 5 wt% ZnO NPs loading | WVP decreased by up to 38% at 5 wt% ZnO NPs loading | NA | [24] |
ZnO/PBAT nanocomposite films | Lowest value of OTR observed for 10 wt% ZnO NPs loading (for 0-10 wt% ZnO NPs loading range) | NA | NA | [25] |
An olive flounder bone gelatin-ZnO nanocomposite | NA | WVP decreased | NA | [92] |
Untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforced-PLA nanocomposites | PO2 values of plasticized PLA film reduced by 36.07 and 55.1% with the incorporation of 10% ZnO (untreated) and ZnO (3-methacryloxypropyltrimethoxysilane treated) NPs | NA | NA | [20] |
ZnO based LDPE nanocomposites | OTR decreased by 17% on adding 5 wt% ZnO NPs | WVTR decreased by 22% on adding 5 wt% ZnO NPs | NA | [93] |
ZnO based PP nanocomposites | OTR decreased by 22% on adding 5 wt% ZnO NPs | WVTR decreased by 12% on adding 5 wt% ZnO NPs | NA | [94] |
Semolina reinforced with nanofillers (ZnO-nanorod/nano-kaolin) | PO2 decreased by up to 66% | NA | NA | [21] |
ZnO based PLA nanocomposite | Decreased | Increased | NA | [29] |
Bovine skin gelatin type-B (BSG) composite films incorporated with ZnO nanorods and clove essential oil (CEO) | PO2 decreased by 32.27% with the addition of 2 wt% ZnO NPs | NA | NA | [26] |
ZnO NPs Based Composites | Effect on Mechanical Properties | Reference |
---|---|---|
LLDPE films reinforced with ZnO NPs | Elongation at break: decreased; Tensile strength: increased | [28] |
PLA/ZnO biocomposite | Stress at yield: higher in the machine direction; Elongation at break: higher in the machine direction | [27] |
PLA-ZnO nanocomposite films | Young’s modulus: slightly increased; Elongation at break: decreased | [22] |
ZnO-reinforced PHBV bionanocomposites | Young’s modulus: increased by ~57% on 4 wt% ZnO NPs loading; Strain at break: decreased by ~30% on increasing ZnO NPs content | [23] |
ZnO/PHB bionanocomposites | Tensile strength: increased up to 32%; Young’s modulus: increased up to 43%; Impact strength: increased up to 26% | [24] |
ZnO/PBAT nanocomposite films | Elongation at break: increased; Tensile strength: increased | [25] |
An olive flounder bone gelatin-ZnO nanocomposite | Elongation at break: decreased by ~37%; Tensile strength: increased | [92] |
Untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforced-PLA nanocomposites | Tensile strength: decreased in ZnO NPs (untreated) composites; increased in ZnO NPs (3-methacryloxypropyltrimethoxysilane treated) composites; Elongation at break: decreased in ZnO NPs (untreated) composites; a marginal drop in ZnO NPs (3-methacryloxypropyltrimethoxysilane treated) composites | [20] |
ZnO based LDPE nanocomposites | Elongation at break: decreased; Tensile strength: decreased | [93] |
ZnO based PP nanocomposites | Elongation at break: decreased; Tensile strength: decreased | [94] |
ZnO based PLA nanocomposite | Elongation at break: increased; Tensile strength: decreased | [29] |
Bovine skin gelatin type-B (BSG) composite films incorporated with ZnO nanorods and clove essential oil (CEO) | Elongation at break: increased; Tensile strength: increased | [26] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Buntinx, M.; Deferme, W.; Peeters, R. (Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials 2019, 9, 1494. https://doi.org/10.3390/nano9101494
Abbas M, Buntinx M, Deferme W, Peeters R. (Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials. 2019; 9(10):1494. https://doi.org/10.3390/nano9101494
Chicago/Turabian StyleAbbas, Mohsin, Mieke Buntinx, Wim Deferme, and Roos Peeters. 2019. "(Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties" Nanomaterials 9, no. 10: 1494. https://doi.org/10.3390/nano9101494
APA StyleAbbas, M., Buntinx, M., Deferme, W., & Peeters, R. (2019). (Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials, 9(10), 1494. https://doi.org/10.3390/nano9101494