Synthesis of NdAlO3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Synthesis
2.2. Catalytic Reaction of Transesterification
3. Results and Discussion
3.1. Catalyst Synthesis
3.2. Canola Oil Characterization
3.3. Catalytic Reaction of Transesterification
3.4. Recyclability of the Catalyst
3.5. Analysis of Reaction Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Zhang, H.; Chang, F.; Li, H.; Pan, H.; Xue, W.; Hu, D.-Y.; Yang, S. Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Ind. Eng. Chem. 2015, 31, 385–392. [Google Scholar] [CrossRef]
- Demirbas, A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 2018, 49, 125–130. [Google Scholar] [CrossRef]
- Borges, M.E.; Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 2012, 16, 2839–2849. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, F.; Yang, D.; Li, X.; Sun, P. Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil. Biomass Bioenergy 2011, 35, 2787–2795. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, B.-S.; Kim, M.-J.; Park, Y.M.; Kim, D.-K.; Lee, J.-S.; Lee, K.-Y. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today 2004, 93, 315–320. [Google Scholar] [CrossRef]
- Demirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Demirbas, A. Biorefineries: Current activities and future developments. Energy Convers. Manag. 2009, 50, 2782–2801. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Ling, T.C.; Juan, J.C.; Lee, D.J.; Chang, J.S.; Show, P.L. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour. Technol. 2016, 215, 346–356. [Google Scholar] [CrossRef]
- Sinha, S.; Agarwal, A.K.; Garg, S. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Convers. Manag. 2008, 49, 1248–1257. [Google Scholar] [CrossRef]
- Zuñiga-Diaz, J.; Reyes-Dorantes, E.; Quinto-Hernandez, A.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G.; Martinez-Gomez, L. Biodiesel from “Morelos” Rice: Synthesis, Oxidative Stability and Corrosivity. J. Chem. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Nizah, M.F.R.; Taufiq-Yap, Y.H.; Rashid, U.; Teo, S.H.; Nur, Z.A.S.; Islam, A. Production of biodiesel from non-edible Jatropha curcas oil via transesterification using Bi2O3–La2O3 catalyst. Energy Convers. Manag. 2014, 88, 1257–1262. [Google Scholar] [CrossRef]
- Contreras-Andrade, I.; Avella-Moreno, E.; Sierra-Cantor, J.F.; Guerrero-Fajardo, C.A.; Sodré, J.R. Purification of glycerol from biodiesel production by sequential extraction monitored by 1H NMR. Fuel Process. Technol. 2015, 132, 99–104. [Google Scholar] [CrossRef]
- Nanda, N.R.; Yuan, Z.; Qin, W.; Poirier, M.A.; Chunbao, X. Purification of crude glycerol using acidification: Effects of acid types and product characterization. Austin J. Chem. Eng. 2014, 1, 1–7. [Google Scholar]
- Lee, H.V.; Juan, J.C.; Taufiq-Yap, Y.H. Preparation and application of binary acidebase CaO-La2O3 catalyst for biodiesel production. Renew. Energy 2015, 74, 124–132. [Google Scholar] [CrossRef]
- Li, X.; Lu, G.; Guo, Y.; Guo, Y.; Wang, Y.; Zhang, Z.; Liu, X.; Wang, Y. A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catal. Commun. 2007, 8, 1969–1972. [Google Scholar] [CrossRef]
- Sun, H.; Ding, Y.; Duan, J.; Zhang, Q.; Wang, Z.; Lou, H.; Zheng, X. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour. Technol. 2010, 101, 953–958. [Google Scholar] [CrossRef]
- Kawashima, A.; Matsubara, K.; Honda, K. Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol. 2008, 99, 3439–3443. [Google Scholar] [CrossRef]
- Russbueldt, B.M.E.; Hoelderich, W.F. New rare earth oxide catalysts for the transesterification of triglycerides with methanol resulting in biodiesel and pure glycerol. J. Catal. 2010, 271, 290–304. [Google Scholar] [CrossRef]
- Salamatinia, B.; Hashemizadeh, I.; Ahmad Zuhairi, A. Alkaline earth metal oxide catalysts for biodiesel production from palm oil: Elucidation of process behaviors and modeling using response surface methodology. Iran. J. Chem. Chem. Eng. 2013, 32, 113–126. [Google Scholar]
- Sato, S.; Takahashi, R.; Kobune, M.; Gotoh, H. Basic properties of rare earth oxides. Appl. Catal. A Gen. 2009, 356, 57–63. [Google Scholar] [CrossRef]
- Richard, A.R.; Fan, M. Rare earth elements: Properties and applications to methanol synthesis catalysis via hydrogenation of carbon oxides. J. Rare Earths 2018, 36, 1127–1135. [Google Scholar] [CrossRef]
- Boukha, Z.; Fitian, L.; López-Haro, M.; Mora, M.; Ruiz, J.R.; Jiménez-Sanchidrián, C.; Blanco, G.; Calvino, J.J.; Cifredo, G.A.; Trasobares, S.; et al. Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples. J. Catal. 2010, 272, 121–130. [Google Scholar] [CrossRef]
- Endalew, A.K.; Kiros, Y.; Zanzi, R. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 2011, 36, 2693–2700. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent No. 3,330,697, 11 July 1967. [Google Scholar]
- Todorovsky, D.S.; Getsova, M.M.; Milanova, M.M.; Kakihana, M.; Petrova, N.L.; Arnaudov, M.G.; Enchev, V.G. The chemistry of the processes involved in the production of lanthanide titanates by the polymerized-complex method. Can. J. Chem. 2007, 85, 547–559. [Google Scholar] [CrossRef]
- Prasadarao, A.V.; Selvaraj, U.; Komarneni, S.; Bhalla, A.S. Sol-gel synthesis of Ln2(Ln = La, Nd)Ti2O7. J. Mater. Res. 1992, 7, 2859–2863. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl. Catal. B Environ. 2009, 89, 590–596. [Google Scholar] [CrossRef]
- Vanhoyland, G.; Pagnaer, J.; D’Haen, J.; Mullens, S.; Mullens, J. Characterization and structural study of lanthanum citrate trihydrate [La(C6H5O7)(H2O)2].H2O. J. Solid State Chem. 2005, 178, 166–171. [Google Scholar] [CrossRef]
- Krishnankutty, K.; Dayas, K.R. Synthesis and characterization of monoclinic rare earth titanates, RE2Ti2O7 (RE = La, Pr, Nd), by a modified SHS method using inorganic activator. Bull. Mater. Sci. 2008, 31, 907–918. [Google Scholar] [CrossRef]
- Cizauskaite, S.; Reichlova, V.; Nenartaviciene, G.; Beganskiene, A.; Pinkas, J.; Kareiva, A. Sol–gel preparation and characterization of gadolinium aluminate. Mater. Chem. Phys. 2007, 102, 105–110. [Google Scholar] [CrossRef]
- Motta, M.; Deimling, C.V.; Saeki, M.J.; Lisboa-Filho, P.N. Chelating agent effects in the synthesis of mesoscopic-size superconducting particles. J. Sol-Gel Sci. Technol. 2008, 46, 201–207. [Google Scholar] [CrossRef]
- Suresh, M.; Prasadarao, A.V.; Komarneni, S. Mixed Hydroxide Precursors for La2Ti2O7 and Nd2Ti2O7 by Homogeneous Precipitation. J. Electroceram. 2001, 6, 147–151. [Google Scholar] [CrossRef]
- Lerma-Garcia, M.J.; Ramis-Ramos, G.; Herrero-Martinez, J.M.; Simo-Alfonso, E.F. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]
- Zúñiga-Díaz, J.; Reyes-Dorantes, E.; Quinto-Hernández, A.; Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G.; Martínez-Gomez, L. Oil Extraction from “Morelos Rice” Bran: Kinetics and Raw Oil Stability. J. Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Madankar, C.S.; Dalai, A.K.; Naik, S.N. Green synthesis of biolubricant base stock from canola oil. Ind. Crop. Prod. 2013, 44, 139–144. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur. J. Lipid Sci. Technol. 2003, 105, 688–696. [Google Scholar] [CrossRef]
- Gao, L.; Sedman, J.; García-González, D.L.; Ehsan, S.; Sprules, T.; van de Voort, F.R. 13C NMR as a primary method for determining saturates, cis and trans-monounsaturates and polyunsaturates in fats and oils for nutritional labeling purposes. Eur. J. Lipid Sci. Technol. 2009, 111, 612–622. [Google Scholar] [CrossRef]
- Lumor, S.E.; Jones, K.C.; Ashby, R.; Strahan, G.D.; Kim, B.H.; Lee, G.-C.; Shaw, J.-F.; Kays, S.E.; Chang, S.-W.; Foglia, T.A.; et al. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application. Agric. Food Chem. 2007, 55, 10692–10702. [Google Scholar] [CrossRef]
- Gouk, S.W.; Cheng, S.F.; Ong, A.S.H.; Chuah, C.H. Rapid and direct quantitative analysis of positional fatty acids in triacylglycerols using 13C NMR. Eur. J. Lipid Sci. Technol. 2012, 114, 510–519. [Google Scholar] [CrossRef]
- Jang, A.; Bae, W.; Hwang, H.-S.; Lee, H.G.; Lee, S. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 2015, 187, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, M.; Ledda, M.; Cozzolino, M.; Minutillo, G.; Tesser, R.; Santacesaria, E. Transesterification of Soybean Oil to Biodiesel by Using Heterogeneous Basic Catalysts. Ind. Eng. Chem. Res. 2006, 45, 3009–3014. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, L.; Sterling, K.; Luo, Z.; Jiang, T.; Miao, R.; Guild, C.; Suib, S.L. Potassium modified layered Ln2O2CO3 (Ln: La, Nd, Sm, Eu) materials: Efficient and stable heterogeneous catalysts for biofuel production. Green Chem. 2015, 17, 3600–3608. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, M.; Qureshi, F.A.; Qamar, R.; Sharma, V.K.; Sultana, S.; Zafar, M. Synthesis and characterization of biodiesel from Aamla oil: A promoting non-edible oil source for bioenergy industry. Fuel Process. Technol. 2015, 133, 173–182. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, S.; Ahmad, F.; Ahmad, M.; Zafar, M.; Khalid, N.; Khan, M.A. Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Process. Technol. 2011, 92, 336–341. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Ambrozin, A.R.P.; Lião, L.M.; Ferreira, A.G. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel 2009, 88, 691–696. [Google Scholar] [CrossRef]
- Hariram, V.; Vasanthaseelan, S. Characterization and identification of FAME’S in canola biodiesel using spectroscopic studies. Int. J. Chem. Sci. 2016, 14, 661–670. [Google Scholar]
- Chira, N.A.; Nicolescu, A.; Stan, R.; Rosca, S. Fatty Acid Composition of Vegetable Oils Determined from 13C-NMR Spectra. Rev. Chim. 2016, 67, 1257–1263. [Google Scholar]
- Hazimah, A.H.; Ooi, T.L.; Salmiah, A. Recovery of glycerol and diglycerol from glycerol pitch. J. Oil Palm Res. 2003, 15, 1–5. [Google Scholar]
Palmitic (16:0) | Estearic (C18:0) | Oleic (C18:1) | Linoleic (C18:2) | Linolenic (C18:3) | Arachidic (C20:0) | Eicosenoic (C21:1) | Behenic (C22:0) |
---|---|---|---|---|---|---|---|
1.62 | 0.68 | 66.53 | 20.95 | 8.57 | 0.27 | 1.13 | 0.24 |
Palmitic (16:0) | Estearic (C18:0) | Oleic (C18:1) | Linoleic (C18:2) | Linolenic (C18:3) | Arachidic (C20:0) | Eicosenoic (C21:1) | Behenic (C22:0) | |
---|---|---|---|---|---|---|---|---|
Residual oil without catalyst | 4.16 | 1.68 | 60.85 | 21.93 | 8.20 | 1.05 | 1.68 | 0.44 |
Residual oil with catalyst | 57.30 | 34.29 | 8.40 | — | — | — | — | — |
Palmitic (16:0) | Estearic (C18:0) | Oleic (C18:1) | Linoleic (C18:2) | Linolenic (C18:3) | Arachidic (C20:0) | Eicosenoic (C21:1) | Behenic (C22:0) | |
---|---|---|---|---|---|---|---|---|
Biodiesel without catalyst | 4.55 | 2.12 | 63.60 | 20.44 | 6.83 | 2.46 | — | — |
Biodiesel with catalyst | 3.65 | 1.56 | 63.70 | 20.33 | 8.57 | 0.94 | 1.06 | 0.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionicio-Navarrete, M.; Arrieta-Gonzalez, C.D.; Quinto-Hernandez, A.; Casales-Diaz, M.; Zuñiga-Diaz, J.; Porcayo-Calderon, J.; Martinez-Gomez, L. Synthesis of NdAlO3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis. Nanomaterials 2019, 9, 1545. https://doi.org/10.3390/nano9111545
Dionicio-Navarrete M, Arrieta-Gonzalez CD, Quinto-Hernandez A, Casales-Diaz M, Zuñiga-Diaz J, Porcayo-Calderon J, Martinez-Gomez L. Synthesis of NdAlO3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis. Nanomaterials. 2019; 9(11):1545. https://doi.org/10.3390/nano9111545
Chicago/Turabian StyleDionicio-Navarrete, Mayra, C. Dinorah Arrieta-Gonzalez, Alfredo Quinto-Hernandez, Maura Casales-Diaz, Jacqueline Zuñiga-Diaz, Jesus Porcayo-Calderon, and Lorenzo Martinez-Gomez. 2019. "Synthesis of NdAlO3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis" Nanomaterials 9, no. 11: 1545. https://doi.org/10.3390/nano9111545