Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Colored TiO2 Nanoparticles
2.3. Materials Characterization
2.4. Analytical Methods
2.5. Photocatalytic Experiments
3. Results and Discussion
3.1. Synthesis Process of Colored TiO2
3.2. Characterization of the Material
3.2.1. Structural, Physical, and Optical Properties
3.2.2. Textural Properties and Morphology
3.2.3. XPS Analysis
3.3. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jafari, T.; Moharreri, E.; Amin, A.; Miao, R.; Song, W.; Suib, S. Photocatalytic Water splitting-the Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, H.G.; Pan, J.; Yang, Y.Q.; Lu, G.Q.; Cheng, H.M. Titanium Dioxide crystals with Tailored Facets. Chem. Rev. 2014, 114, 9559–9612. [Google Scholar] [CrossRef] [PubMed]
- Gratzel, M. Photoelectrochemical Cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.V.; Reddy, K.R.; Shetti, N.P.; Mishra, A.; Basu, S. Recent Progress in TiO2 and ZnO-Based Nanostructured Hybrid Photocatalysts for Water Purification and Hydrogen Generation. In Nanoscale Materials in Water Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 815–843. [Google Scholar]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Hamidi, F.; Aslani, F.J.N. TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials 2019, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.A. A Surface Science Perspective on TiO2 Photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium dioxide: A Review of Fundamentals, Progress and Problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Peter, Y.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with black Hydrogenated Titanium dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Ali-Loytty, H.; Hannula, M.; Saari, J.; Palmolahti, L.; Bhuskute, B.D.; Ulkuniemi, R.; Nyyssoonen, T.; Lahtonen, K.; Valden, M. Diversity of TiO2: Controlling the Molecular and Electronic Structure of Atomic-Layer-Deposited Black TiO2. ACS Appl. Mater. Interfaces 2019, 11, 2758–2762. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, G.; Wang, X.; Yuan, X.; Lin, T.; Huang, F. Progress in black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater. 2016, 6, 1600452. [Google Scholar] [CrossRef]
- Wang, H.; Lin, T.; Zhu, G.; Yin, H.; Lü, X.; Li, Y.; Huang, F. Colored Titania Nanocrystals and Excellent Photocatalysis for Water Cleaning. Catal. Commun. 2015, 60, 55–59. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E. Surface Modification of mixed-phase Hydrogenated TiO2 and Corresponding Photocatalytic Response. Appl. Surf. Sci. 2015, 359, 883–896. [Google Scholar] [CrossRef]
- Fang, W.; Xing, M.; Zhang, J. A New Approach to Prepare Ti3+ Self-doped TiO2 via NaBH4 Reduction and Hydrochloric acid Treatment. Appl. Catal. B Environ. 2014, 160, 240–246. [Google Scholar] [CrossRef]
- Shah, M.W.; Zhu, Y.; Fan, X.; Zhao, J.; Li, Y.; Asim, S.; Wang, C. Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-Light Photocatalysis. Sci. Rep. 2015, 5, 15804. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Huang, F. Black Titanium dioxide (TiO2) Nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Tian, L.; Tan, X.; Zhou, M.; Liu, L.; Chen, X. Modifying Oxide Nanomaterials’ Properties by Hydrogenation. MRS Commun. 2016, 6, 192–203. [Google Scholar] [CrossRef]
- Shin, J.Y.; Joo, J.H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2−x Nanoparticles via Hydrogen Reduction for High rate Capability Lithium Batteries. Chem. Mater. 2012, 24, 543–551. [Google Scholar] [CrossRef]
- Zou, X.Z.; Liu, J.; Su, J.; Zuo, F.; Chen, J.; Feng, P. Facile Synthesis of Thermal-and Photostable Titania with Paramagnetic Oxygen Vacancies for Visible-Light Photocatalysis. Chem. Eur. J. 2013, 19, 2866–2873. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P. Self-doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. J. Am. Chem. Soc. 2010, 132, 11856–11857. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, Y.; Wang, Y.; Hu, Z.; Zhao, H.; Xie, W. A Facile Approach to Prepare black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity. Nanomaterials 2018, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Lin, T.; Yang, C.; Wang, Z.; Zhu, G.; Xu, T.; Xie, X.; Huang, F.; Jiang, M. Grey TiO2 Nanowires Synthesized by Aluminum-Mediated Reduction and Their Excellent Photocatalytic Activity for Water Cleaning. Chem. Eur. J. 2013, 19, 13313–13316. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a Green Solvent for High Product Yields and Selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef]
- Escudero, A.; Moretti, E.; Ocana, M. Synthesis and Luminescence of Uniform Europium-doped Bismuth Fluoride and Bismuth Oxyfluoride Particles with Different Morphologies. CrystEngComm 2014, 16, 3274–3283. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Bhattacharjya, D.; Yu, J.S. Green Fabrication of 3-dimensional Flower-shaped Zinc Glycerolate and ZnO Microstructures for p-nitrophenol Sensing. RSC Adv. 2015, 5, 37721–37728. [Google Scholar] [CrossRef]
- Diaz-Alvarez, A.; Cadierno, V. Glycerol: A Promising Green Solvent and Reducing Agent for Metal-catalyzed Transfer Hydrogenation Reactions and Nanoparticles Formation. J. Appl. Sci. 2013, 3, 55–69. [Google Scholar] [CrossRef]
- Gu, Y.; Jerome, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
- Saeed, M.O.; Azizli, K.; Isa, M.H.; Bashir, M.J. Application of CCD in RSM to Obtain Optimize Treatment of POME using Fenton Oxidation Process. J. Water Process Eng. 2015, 8, e7–e16. [Google Scholar] [CrossRef]
- Jarujareet, P.; Nakkanong, K.; Luepromchai, E.; Suttinun, O. Bioaugmentation Coupled with Phytoremediation for the Removal of Phenolic Compounds and Color from Treated Palm Oil Mill Effluent. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ergul, F.E.; Sargın, S.; Ongen, G.; Sukan, F.V. Dephenolization and Decolorization of Olive Mill Wastewater through Sequential Batch and Co-culture Applications. World J. Microbiol. Biotechnol. 2011, 27, 107–114. [Google Scholar] [CrossRef]
- Magalhaes, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L.J.T. Rapid Microplate High-throughput Methodology for Assessment of Folin-Ciocalteu Reducing Capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Chahdoura, F.; Favier, I.; Gomez, M. Glycerol as Suitable Solvent for the Synthesis of metallic Species and Catalysis. Chem. Eur. J. 2014, 20, 10884–10893. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. H-doped black Titania with very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Adv. Funct. Mater. 2013, 23, 5444–5450. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Yin, H.; Yang, C.; Cui, H.; Wang, Z.; Xu, J.; Lin, T.; Huang, F. Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water splitting. ChemCatChem 2015, 7, 2614–2619. [Google Scholar] [CrossRef]
- Myung, S.T.; Kikuchi, M.; Yoon, C.S.; Yashiro, H.; Kim, S.-J.; Sun, Y.K.; Scrosati, B. Black Anatase Titania enabling Ultra High cycling rates for Rechargeable Lithium Batteries. Energy Environ. Sci. 2013, 6, 2609–2614. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Yoong, L.; Chong, F.K.; Dutta, B.K. Development of Copper-doped TiO2 Photocatalyst for Hydrogen Production under Visible Light. Energy 2009, 34, 1652–1661. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Li, J.; Hu, Z.; Zhao, H.; Xie, W.; Wei, Z. Synthesis of Black TiO2 with Efficient Visible-light Photocatalytic Activity by Ultraviolet Light Irradiation and Low Temperature Annealing. Mater. Res. Bull. 2018, 98, 280–287. [Google Scholar] [CrossRef]
- De Luna, M.D.; Laciste, M.T.; Tolosa, N.C.; Lu, M.C. Effect of Catalyst Calcination Temperature in the Visible Light Photocatalytic Oxidation of Gaseous Formaldehyde by Multi-element doped Titanium dioxide. Eniron. Sci. Pollut. Res. 2018, 15, 15216–15225. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Jiao, S.; Fang, Z.; Liu, X.; Xu, Y.; Pang, G.; Feng, S. Synthesis, Microstructure, and Properties of Black Anatase and B phase TiO2 nanoparticles. Mater. Des. 2016, 100, 235–240. [Google Scholar] [CrossRef]
- Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity; Academic Press: London, UK, 1982. [Google Scholar]
- Ren, T.Z.; Yuan, Z.-Y.; Su, B.L. Surfactant-assisted Preparation of Hollow Microspheres of Mesoporous TiO2. Chem. Phys. Lett. 2003, 374, 170–175. [Google Scholar] [CrossRef]
- Trung, T.; Cho, W.-J.; Ha, C.-S. Preparation of TiO2 Nanoparticles in glycerol-containing solutions. Mater. Lett. 2003, 57, 2746–2750. [Google Scholar] [CrossRef]
- Shvab, R.; Hryha, E.; Nyborg, L. Surface Chemistry of the Titanium Powder Studied by XPS using Internal Standard Reference. Powder Metall. 2017, 60, 42–48. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Bharti, B.; Kumar, S.; Lee, H.-N.; Kumar, R. Formation of Oxygen Vacancies and Ti3+ State in TiO2 thin Film and Enhanced Optical Properties by Air Plasma Treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef] [PubMed]
- Atuchin, V.V. Comment on “A ‘one pot’Gel Combustion Strategy towards Ti3+ self-doped ‘Black’anatase TiO2−x Solar Photocatalyst,” by SG Ullattil and P. Periyat, J. Mater. Chem. A, 2016, 4, 5854. J. Mater. Chem. A 2016, 5, 426–427. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X. Ti3+ self-doped Dark Rutile TiO2 ultrafine Nanorods with Durable High-rate Capability for Lithium-ion Batteries. Adv. Funct. Mater. 2015, 25, 6793–6801. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering Coexposed {001} and {101} Facets in Oxygen-deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light. ACS Catal. 2016, 6, 1097–1108. [Google Scholar] [CrossRef]
- Phonepaseuth, P.; Rakkiatsakul, V.; Kachenchart, B.; Suttinun, O.; Luepromchai, E. Phenolic Compounds Removal by Grasses and Soil Bacteria after Land Application of Treated Palm Oil Mill Effluent: A Pot Study. Environ. Eng. Res. 2018, 24, 127–136. [Google Scholar] [CrossRef]
- Chantho, P.; Musikavong, C.; Suttinun, O. Removal of Phenolic Compounds from Palm Oil Mill Effluent by Thermophilic Bacillus Thermoleovorans Strain A2 and their Effect on Anaerobic Digestion. Int. Biodeterior. Biodegrad. 2016, 115, 293–301. [Google Scholar] [CrossRef]
- Kietkwanboot, A.; Tran, H.T.M.; Suttinun, O. Simultaneous Dephenolization and Decolorization of Treated Palm Oil mill Effluent by Oil Palm Fiber-immobilized Trametes Hirsuta strain AK 04. Water Air Soil Pollut. 2015, 226, 345. [Google Scholar] [CrossRef]
- Neoh, C.H.; Lam, C.Y.; Lim, C.K.; Yahya, A.; Ibrahim, Z. Decolorization of Palm Oil Mill Effluent using Growing Cultures of Curvularia Clavata. Environ. Sci. Pollut. Res. 2014, 21, 4397–4408. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Goh, P.; Lai, G.; Lau, W.; Ismail, A.J.J.T. Treatment of Aerobic Treated Palm Oil Mill Effluent (AT-POME) by using TiO2 Photocatalytic Process. J. Teknol. 2014, 70, 61–63. [Google Scholar] [CrossRef]
- Ayodhya, D.; Perka, S.; Nambigari, N.J.N.R. Sunlight-driven Efficient Photocatalytic and Sntimicrobial Studies of Microwave-assisted Ir-doped TiO2 Nanoparticles for Environmental Safety. Nanochem. Res. 2018, 3, 36–49. [Google Scholar]
- Harris, L.; Schumacher, R. The Influence of Preparation on Semiconducting Rutile (TiO2). J. Electrochem. Soc. 1980, 127, 1186–1188. [Google Scholar] [CrossRef]
- Pei, Z.; Ding, L.; Lin, H.; Weng, S.; Zheng, Z.; Hou, Y.; Liu, P. Facile Synthesis of Defect-mediated TiO2−x with Enhanced Visible Light Photocatalytic Activity. J. Mater. Chem. A 2013, 1, 10099–10102. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Lu, J.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.H. Hydrogenated Titania: Synergy of Surface Modification and Morphology Improvement for Enhanced Photocatalytic Activity. Chem. Commun. 2012, 48, 5733–5735. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Mahjouri-Samani, M.; Eres, G.; Sachan, R.; Yoon, M.; Chisholm, M.F.; Wang, K.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B. Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano 2015, 9, 10482–10488. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.A.; Epling, W.S.; Peden, C.H.; Perkins, C.L. Insights into Photoexcited Electron Scavenging Processes on TiO2 obtained from Studies of the Reaction of O2 with OH groups Adsorbed at Electronic defects on TiO2 (110). J. Phys. Chem. B 2003, 107, 534–545. [Google Scholar] [CrossRef]
- Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. Excess Electron States in Reduced bulk Anatase TiO2: Comparison of Standard GGA, GGA+ U, and Hybrid DFT Calculations. J. Chem. Phys. 2008, 129, 154113. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Haya, R.; Barecka, M.H.; Miro, P.; Marin, M.L.; Miranda, M.A. Photocatalytic Treatment of Cork Wastewater Pollutants. Degradation of Gallic Acid and Trichloroanisole using Triphenyl(thia)pyrylium Salts. Appl. Catal. B Environ. 2015, 179, 433–438. [Google Scholar] [CrossRef]
- Gimeno, O.; Carbajo, M.; Lopez, M.J.; Melero, J.A.; Beltran, F.; Rivas, F.J. Photocatalytic Promoted Oxidation of Phenolic Mixtures: An insight into the Operating and Mechanistic Aspects. Water Res. 2007, 41, 4672–4684. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.L.; Valenzuela, M.A.; Colbeau-Justin, C.; Vazquez, P.; Rodriguez, J.L.; Avendano, J.R.; Alfaro, S.; Tirado, S.; Garduño, A.; De la Rosa, J.M. Photocatalytic Degradation of Gallic Acid over CuO–TiO2 Composites under UV/Vis LEDs Irradiation. Appl. Catal. A 2016, 521, 140–148. [Google Scholar] [CrossRef]
Sample Label | Glycerol:H2O (v/v) | Glycerol Concentration (mol/L) |
---|---|---|
T1 | 0:1 | 0.0 |
T2 | 1:9 | 1.163 |
T3 | 1:2 | 3.834 |
T4 | 1:1 | 5.815 |
Sample | Band Gap/eV (±0.1) | Specific Surface Area/m2·g−1 (±5%) | Pore Volume/cm3·g−1 (±0.01) | Average Pore Size/nm (±0.01) | Particle Size Range (nm) |
---|---|---|---|---|---|
T1 | 3.16 | 154.51 | 0.198 | 4.35 | 13–17 |
T2 | 2.96 | 99.88 | 0.161 | 6.49 | 16–22 |
T3 | 2.50 | 40.35 | 0.030 | 3.06 | 13–18 |
T4 | 2.29 | 12.01 | 0.014 | 4.47 | 11–15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, R.; Kait, C.F.; Chia, H.Y.; Isa, M.H.; Huei, L.W. Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds. Nanomaterials 2019, 9, 1586. https://doi.org/10.3390/nano9111586
Nawaz R, Kait CF, Chia HY, Isa MH, Huei LW. Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds. Nanomaterials. 2019; 9(11):1586. https://doi.org/10.3390/nano9111586
Chicago/Turabian StyleNawaz, Rab, Chong Fai Kait, Ho Yeek Chia, Mohamed Hasnain Isa, and Lim Wen Huei. 2019. "Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds" Nanomaterials 9, no. 11: 1586. https://doi.org/10.3390/nano9111586
APA StyleNawaz, R., Kait, C. F., Chia, H. Y., Isa, M. H., & Huei, L. W. (2019). Glycerol-Mediated Facile Synthesis of Colored Titania Nanoparticles for Visible Light Photodegradation of Phenolic Compounds. Nanomaterials, 9(11), 1586. https://doi.org/10.3390/nano9111586