Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.2. Film Preparation
2.3. Instruments and Sample Characterization
2.4. TE Film Fabrication and Characterization
2.5. TE Humid Reliability Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, J.G.; Hong, J.-I.; Kim, S.H.; Kwak, J. Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films. J. Mater. Sci. Mater. Electron. 2016, 27, 6122–6127. [Google Scholar] [CrossRef]
- Kim, G.-H.; Shao, L.; Zhang, K.; Pipe, K.P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719. [Google Scholar] [CrossRef] [PubMed]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Li, P.; Sun, K.; Ouyang, J. Stretchable and Conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 2015, 7, 18415–18423. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Voigt, M.M.; Martin, S.J.; Whittle, T.J.; Dalgliesh, R.M.; Thompson, R.L.; Lidzey, D.G.; Geoghegan, M. Structure of films of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) crosslinked with glycerol. J. Mater. Chem. 2011, 21, 19324–19330. [Google Scholar] [CrossRef]
- Lee, J.Y. Indium blocking in polymer light emitting diodes with a crosslinked poly(3,4-ethylenedioxythiophene)/silane hole transport layer. Synth. Met. 2006, 156, 537–540. [Google Scholar] [CrossRef]
- Huang, T.-M.; Batra, S.; Hu, J.; Miyoshi, T.; Cakmak, M. Chemical cross-linking of conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using poly(ethylene oxide) (PEO). Polymer 2013, 54, 6455–6462. [Google Scholar] [CrossRef]
- Lee, J.J.; Lee, S.H.; Kim, F.S.; Choi, H.H.; Kim, J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron. 2015, 26, 191–199. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Pan, J.; Wei, P.; Liu, N.; Wu, B.; Cheng, J.; Lu, C.; Wang, L. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials 2012, 33, 378–394. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuator B-Chem. 2014, 196, 357–369. [Google Scholar] [CrossRef]
- Mantione, D.; Del Agua, I.; Schaafsma, W.; ElMahmoudy, M.; Uguz, I.; Sanchez-Sanchez, A.; Sardon, H.; Castro, B.A.; Malliaras, G.G.; Mecerreyes, D. Low-temperature cross-linking of PEDOT:PSS films using divinylsulfone. ACS Appl. Mater. Interfaces 2017, 9, 18254–18262. [Google Scholar] [CrossRef] [PubMed]
- Mengistie, D.A.; Wang, P.-C.; Chu, C.-W. Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 2013, 1, 9907–9915. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, G.; Li, R.; Pan, T. Photopatternable PEDOT:PSS/PEG hybrid thin film with moisture stability and sensitivity. Microsyst. Nanoeng. 2017, 3, 17004. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Jang, J.G.; Kim, J.-G.; Hong, J.-I.; Kim, J.; Kwak, J.; Kim, S.H.; Shin, S. Structural and Morphological Evolution for Water-resistant Organic Thermoelectrics. Sci. Rep. 2017, 7, 13287. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Kim, J.-D. Organic solvent-free preparation of electrolyte membranes with high proton conductivity using aromatic hydrocarbon polymers and small cross-linker molecules. Solid State Ion. 2018, 316, 102–109. [Google Scholar] [CrossRef]
- Food, U.; Drug Administration Glycerin. GRAS status as a direct human food ingredient. Fed. Regist. 1979, 48, 5759–5760. [Google Scholar]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a sustainable solvent for green chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
- Hsieh, W.-P.; Losego, M.D.; Braun, P.V.; Shenogin, S.; Keblinski, P.; Cahill, D.G. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 2011, 83, 174205. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-H.; Kim, J.; Pipe, K.P. Humidity-dependent thermoelectric properties of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate). Appl. Phys. Express 2016, 108, 093301. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Li, D.; Coates, N.E.; Segalman, R.A.; Cahill, D.G. Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity. Macromolecules 2015, 48, 585–591. [Google Scholar] [CrossRef]
- Zhang, S.; Kumar, P.; Nouas, A.S.; Fontaine, L.; Tang, H.; Cicoira, F. Solvent-induced changes in PEDOT: PSS films for organic electrochemical transistors. APL Mater. 2015, 3, 014911. [Google Scholar] [CrossRef]
- Schreiber, K.C. Infrared spectra of sulfones and related compounds. Anal. Chem. 1949, 21, 1168–1172. [Google Scholar] [CrossRef]
- Gong, C.; Luo, Q.; Li, Y.; Giotto, M.; Cipollini, N.E.; Yang, Z.; Weiss, R.; Scola, D.A. Dual crosslinked phenylethynyl end-capped sulfonated polyimides via the ethynyl and sulfonate groups promoted by PEG. J. Polym. Sci. A 2011, 49, 4476–4491. [Google Scholar] [CrossRef]
- Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 2016, 138, 040802. [Google Scholar] [CrossRef]
- Hong, J.Y.; Shin, Y.C.; Zubair, A.; Mao, Y.; Palacios, T.; Dresselhaus, M.S.; Kim, S.H.; Kong, J. A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 2016, 28, 2382–2392. [Google Scholar] [CrossRef]
- Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 2003, 90, 1731–1738. [Google Scholar] [CrossRef]
- Bubnova, O.; Khan, Z.U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.; Kim, S.; Son, W.; Cheong, I.W.; Kim, J.H. Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. J. Mater. Chem. A 2014, 2, 7288–7294. [Google Scholar] [CrossRef]
- Aasmundtveit, K.; Samuelsen, E.; Inganäs, O.; Pettersson, L.; Johansson, T.; Ferrer, S. Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth. Met. 2000, 113, 93–97. [Google Scholar] [CrossRef]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.R.; Kim, B.J.; Lee, K. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Zhou, J.; Anjum, D.H.; Chen, L.; Xu, X.; Ventura, I.A.; Jiang, L.; Lubineau, G. The temperature-dependent microstructure of PEDOT/PSS films: Insights from morphological, mechanical and electrical analyses. J. Mater. Chem. C 2014, 2, 9903–9910. [Google Scholar] [CrossRef]
- Lang, U.; Naujoks, N.; Dual, J. Mechanical characterization of PEDOT: PSS thin films. Synth. Met. 2009, 159, 473–479. [Google Scholar] [CrossRef]
- Dupont, S.R.; Novoa, F.; Voroshazi, E.; Dauskardt, R.H. Decohesion kinetics of PEDOT: PSS conducting polymer films. Adv. Funct. Mater. 2014, 24, 1325–1332. [Google Scholar] [CrossRef]
- Alhummiany, H.; Rafique, S.; Sulaiman, K. XPS Analysis of the Improved Operational Stability of Organic Solar Cells Using a V2O5 and PEDOT:PSS Composite Layer: Effect of Varied Atmospheric Conditions. J. Phys. Chem. C 2017, 121, 7649–7658. [Google Scholar] [CrossRef]
- Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, S.; Choulis, S.A. Thermal degradation mechanisms of PEDOT:PSS. Org. Electron. 2009, 10, 61–66. [Google Scholar] [CrossRef]
- Kim, J.; Patel, R.; Jung, B.J.; Kwak, J. Simultaneous improvement of performance and stability in PEDOT:PSS—sorbitol composite based flexible thermoelectric modules by novel design and fabrication process. Macromol. Res. 2018, 26, 61–65. [Google Scholar] [CrossRef]
Sample | Atomic Percentage (%) | ||
---|---|---|---|
C1s | O1s | S2p | |
Pristine film | 62.93 ± 3.21 | 23.27 ± 1.81 | 9.94 ± 1.19 |
PEG solution-treated film | 67.19 ± 5.04 | 27.95 ± 1.12 | 3.21 ± 0.59 |
PEG vapor-treated film | 66.52 ± 2.59 | 27.36 ± 1.04 | 3.73 ± 0.67 |
Glycerol solution-treated film | 62.87 ± 3.46 | 25.27 ± 0.61 | 6.72 ± 1.41 |
Glycerol vapor-treated film | 62.83 ± 3.02 | 24.05 ± 0.55 | 9.40 ± 1.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Jang, J.G.; Kwak, J.; Hong, J.-I.; Kim, S.H. Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol. Nanomaterials 2019, 9, 1591. https://doi.org/10.3390/nano9111591
Kim J, Jang JG, Kwak J, Hong J-I, Kim SH. Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol. Nanomaterials. 2019; 9(11):1591. https://doi.org/10.3390/nano9111591
Chicago/Turabian StyleKim, Jaeyun, Jae Gyu Jang, Jeonghun Kwak, Jong-In Hong, and Sung Hyun Kim. 2019. "Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol" Nanomaterials 9, no. 11: 1591. https://doi.org/10.3390/nano9111591
APA StyleKim, J., Jang, J. G., Kwak, J., Hong, J. -I., & Kim, S. H. (2019). Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol. Nanomaterials, 9(11), 1591. https://doi.org/10.3390/nano9111591