Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. As-Deposited CaO–CoO and Annealed Ca–Co–O Films
3.2. Ex-Situ XRD Annealing Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B.B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 2004, 3, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.-K.; Lan, J.-L.; Ventura, K.J.; Tan, X.; Lin, Y.-H.; Nan, C.-W. Contribution of point defects and nano-grains to thermal transport behaviours of oxide-based thermoelectrics. NPJ Comput. Mater. 2016, 2, 16023. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Tudu, B.; Tiwari, A. Recent advances in oxide thermoelectric materials and modules. Vacuum 2017, 146, 356–374. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, 1369. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Kumar, A.V.; Banerji, P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 2010, 108, 064322. [Google Scholar] [CrossRef]
- Berettaa, D.; Neophytouc, N.; Hodgesd, J.M.; Kanatzidisd, M.G.; Narduccie, D.; Martin-Gonzalezf, M.; Beekmang, M.; Balkeh, B.; Cerrettii, G.; Tremelj, W.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Rep. 2018. [Google Scholar] [CrossRef]
- Jood, P.; Ohta, M. Hierarchical architecturing for layered thermoelectric sulfides and chalcogenides. Materials 2015, 8, 1124–1149. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, J. Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices. J. Mater. Res. 2017, 32, 183–203. [Google Scholar] [CrossRef]
- Tan, M.; Deng, Y.; Hao, Y. Enhanced thermoelectric properties and superlattice structure of a bi2te3/zrb2 film prepared by ion-beam-assisted deposition. J. Phys. Chem. C 2013, 117, 20415–20420. [Google Scholar] [CrossRef]
- Beyer, H.; Nurnus, J.; Böttner, H.; Lambrecht, A.; Wagner, E.; Bauer, G. High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Phys. E Low Dimens. Syst. Nanostruct. 2002, 13, 965–968. [Google Scholar] [CrossRef]
- Saha, B.; Shakouri, A.; Sands, T.D. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials featured. Appl. Phys. Rev. 2018, 5, 021101. [Google Scholar] [CrossRef]
- Hansen, A.-L.; Dankwort, T.; Winkler, M.; Ditto, J.; Johnson, D.C.; Koenig, J.D.; Bartholomé, K.; Kienle, L.; Bensch, W. Synthesis and thermal instability of high-quality Bi2Te3/Sb2Te3 superlattice thin film thermoelectrics. Chem. Mater. 2014, 26, 6518–6522. [Google Scholar] [CrossRef]
- Liu, J.F.; Huang, X.Y.; Xu, G.S.; Chen, L.D. Thermoelectric properties of layered Sr0.29CoO2 crystals. J. Alloys Comp. 2013, 576, 247. [Google Scholar] [CrossRef]
- Ishikawa, R.; Ono, Y.; Miyazaki, Y.; Kajitani, T. Low-temperature synthesis and electric properties of new layered cobaltite, SrxCoO2. Jpn. J. Appl. Phys. 2002, 41, L337–L339. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Yang, D.; Wanb, S.; Xu, G. High-temperature thermoelectric properties of layered BaxCoO2. Scr. Mater. 2015, 100, 63–65. [Google Scholar] [CrossRef]
- Liu, J.F.; Huang, X.Y.; Yang, D.F.; Xu, G.S.; Chen, L.D. Synthesis and physical properties of layered BaxCoO2. Dalton Trans. 2014, 43, 15414–15418. [Google Scholar] [CrossRef] [PubMed]
- Brázda, P.; Palatinus, L.; Klementová, M.; Buršík, J.; Knížek, K. Mapping of reciprocal space of La0.30CoO2 in 3D: Analysis of superstructure diffractions and intergrowths with Co3O4. J. Solid State Chem. 2015, 227, 30–34. [Google Scholar]
- Knızˇek, K.; Hejtma’nek, J.; Marysˇko, M.; Sˇantava’, E.; Jira’k, Z.; Bursˇı’k, J.; Kirakci, K.; Beran, P. Structure and properties of a novel cobaltate La0.30CoO2. J. Solid State Chem. 2011, 184, 2231–2237. [Google Scholar] [CrossRef]
- Knížek, K.; Jirák, Z.; Hejtmánek, J.; Maryško, M.; Buršík, J. Structure and properties of novel cobaltates Ln0.3CoO2 (Ln = La, Pr, and Nd). J. Appl. Phys. 2012, 111, 07D707. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B Condens. Matter 1997, 56, 12685. [Google Scholar] [CrossRef]
- Cushing, B.L.; Wiley, J.B. Topotactic routes to layered calcium cobalt oxides author links open overlay panel. J. Solid State Chem. 1998, 141, 385–391. [Google Scholar] [CrossRef]
- Huang, R.; Mizoguchi, T.; Sugiura, K.; Nakagawa, S.; Ohta, H.; Saito, T.; Koumoto, K.; Hirayama, T.; Ikuhara, Y. Microstructure evolution of Ca0.33CoO2 thin films investigated by high-angle annular dark-field scanning transmission electron microscopy. J. Mater. Res. 2009, 24, 279–287. [Google Scholar] [CrossRef]
- Takahashi, K.; Kanno, T.; Sakai, A.; Adachi, H.; Yamada, Y. Gigantic transverse voltage induced via offdiagonal thermoelectric effect in thin films. Appl. Phys. Lett. 2010, 97, 021906. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- Takahashi, K.; Kanno, T.; Sakai, A.; Adachi, H.; Yamada, Y. Large crystallographic orientation tilting induced by postoxidation annealing in layered cobaltite CaxCoO2 thin films. Cryst. Growth Des. 2012, 12, 1708–1712. [Google Scholar] [CrossRef]
- Kanno, T.; Yotsuhashi, S.; Adachi, H. Anisotropic thermoelectric properties in layered cobaltite AxCoO2 (A = Sr and Ca) thin films. Appl. Phys. Lett. 2004, 85, 739. [Google Scholar] [CrossRef]
- Paul, B.; Schroeder, J.L.; Kerdsongpanya, S.; Nong, N.V.; Schell, N.; Ostach, D.; Lu, J.; Birch, J.; Eklund, P. Mechanism of formation of the thermoelectric layered cobaltate Ca3Co4O9 by annealing of CaO-CoO thin films. Adv. Electron. Mater. 2015, 1, 1400022. [Google Scholar] [CrossRef]
- Paul, B.; Lu, J.; Eklund, P. Nanostructural tailoring to induce flexibility in thermoelectric Ca3Co4O9 thin films. ACS Appl. Mater. Interfaces 2017, 9, 25308–25316. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Björk, E.M.; Kumar, A.; Lu, J.; Eklund, P. Nanoporous Ca3Co4O9 thin films for transferable thermoelectrics. ACS Appl. Energy Mater. 2018, 1, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, X.; Li, F.; Liu, R.; Chen, L. Low-temperature magnetic and thermoelectric properties of layered Ca0:33CoO2 crystals. J. Phys. Soc. Jpn. 2011, 80, 074802. [Google Scholar] [CrossRef]
- Trinh, D.H.; Ottosson, M.; Collin, M.; Reineck, I.; Hultman, L.; Högberg, H. Nanocomposite Al2O3-ZrO2 thin films grown by reactive dual radio-frequency magnetron sputtering. Thin Solid Films 2008, 516, 4977–4982. [Google Scholar] [CrossRef]
- Frodelius, J.; Eklund, P.; Beckers, M.; Persson, P.O.Å.; Högberg, H.; Hultman, L. Sputter deposition from a Ti2AlC target: Process characterization and conditions for growth of Ti2AlC. Thin Solid Films 2010, 518, 1621. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, B.; Lu, J.; Eklund, P. Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering. Nanomaterials 2019, 9, 443. https://doi.org/10.3390/nano9030443
Paul B, Lu J, Eklund P. Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering. Nanomaterials. 2019; 9(3):443. https://doi.org/10.3390/nano9030443
Chicago/Turabian StylePaul, Biplab, Jun Lu, and Per Eklund. 2019. "Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering" Nanomaterials 9, no. 3: 443. https://doi.org/10.3390/nano9030443
APA StylePaul, B., Lu, J., & Eklund, P. (2019). Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering. Nanomaterials, 9(3), 443. https://doi.org/10.3390/nano9030443