Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Nano-Specific Risk Governance Tools
2.2. Identification of Evaluation Criteria and Recommendations to Fulfil the Criteria
3. Results
3.1. Evaluation Criteria
3.2. Tools for Risk Governance of MNs
3.2.1. Risk Pre-Assessment: Early Warning and Screening
3.2.2. Risk and Concern/Safety Assessment
3.2.3. Risk Evaluation (Tolerability/Acceptance)
3.2.4. Risk Management—Decision-Making and Support
3.2.5. Monitoring
3.3. Recommendations on Methodological and IT Developments to Fulfil the Identified Criteria in Tools for Risk Governance of Nanotechnologies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Maynard, A.D.; Warheit, D.B.; Philbert, M.A. The new toxicology of sophisticated materials: Nanotoxicology and beyond. Toxicol. Sci. 2010, 120, S109–S129. [Google Scholar] [CrossRef] [PubMed]
- Drlickova, M.; Smolkova, B.; Runden-Pran, E.; Dusinska, M. Chapter 6 Health Hazard and Risk Assessment of Nanoparticles Applied in Biomedicine. In Nanotoxicology Experimental and Computational Perspectives; The Royal Society of Chemistry: London, UK, 2018; pp. 151–173. [Google Scholar] [CrossRef]
- Malloy, T.; Trump, B.D.; Linkov, I. Risk-based and prevention-based governance for emerging materials. Environ. Sci. Technol. 2016, 50, 6822–6824. [Google Scholar] [CrossRef] [PubMed]
- Trump, B.D.; Hristozov, D.; Malloy, T.; Linkov, I. Risk associated with engineered nanomaterials: Different tools for different ways to govern. Nano Today 2018, 21, 9–13. [Google Scholar] [CrossRef]
- Stone, V.; Führ, M.; Feindt, P.H.; Bouwmeester, H.; Linkov, I.; Sabella, S.; Murphy, F.; Bizer, K.; Tran, L.; Ågerstrand, M.; et al. The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Anal. 2018, 38, 1321–1331. [Google Scholar] [CrossRef]
- Renn, O.; Graham, P. Risk Governance—Towards an Integrative Approach; IRGC: Geneva, Switzerland, 2005. [Google Scholar]
- Hristozov, D.; Gottardo, S.; Semenzin, E.; Oomen, A.; Bos, P.; Peijnenburg, W.; Tongeren, M.; Nowack, B.; Hunt, N.; Brunelli, A.; et al. Frameworks and tools for risk assessment of manufactured nanomaterials. Environ. Int. 2016, 95, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Semenzin, E.; Hristozov, D.; Zabeo, A.; Malsch, I.; McAlea, E.; Murphy, F.; Mullins, M.; van Harmelen, T.; Ligthart, T.; et al. Sustainable nanotechnology decision support system: Bridging risk management, sustainable innovation and risk governance. J. Nanopart. Res. 2016, 18, 89. [Google Scholar] [CrossRef]
- ISO. ISO 31000:2018—Risk Management—Guidelines; ISO/TC 262 Risk management; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- IRGC. Introduction to the IRGC Risk Governance Framework; Revised Version; EPFL International Risk Governance Center: Lausanne, Switzerland, 2017. [Google Scholar]
- Renn, O. Risk Governance: Coping with Uncertainty in a Complex World; Earthscan: London, UK; Sterling, VA, USA, 2008. [Google Scholar]
- Noorlander, C.; Sips, A.; Hock, J.; Honeher, K.; Lehmann, H.C. NANoREG Safe-by-Design (SbD) Concept; RIVM/TEMAS; NANoREG: Haag, The Netherlands, 2016. [Google Scholar]
- Jovanovic, A.; Debray, B.; Ølsen, K.; Balos, D.; Batista, M.; Brouwer, D.H.; Dien, Y.; Dolinski, K.; Duval, C.; Lopez de Ipina, M.J.; et al. Managing Emerging Technology-Related Risks; CWA 16649; CEN: Brussels, Belgium, 2013. [Google Scholar]
- Cooper, R. Stage-Gate Systems: A New Tool for Managing New Products. Bus. Horiz. 1990, 33, 44–54. [Google Scholar] [CrossRef]
- Hristozov, D.; Gottardo, S.; Critto, A.; Marcomini, A. Risk assessment of engineered nanomaterials: A review of available data and approaches from a regulatory perspective. Nanotoxicology 2012, 6, 880–898. [Google Scholar] [CrossRef]
- Grieger, K.; Linkov, I.; Hansen, S.; Baun, A. Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology 2012, 6, 196–212. [Google Scholar] [CrossRef]
- Oomen, A.G.; Steinhäuser, K.G.; Bleeker, E.A.J.; van Broekhuizen, F.; Sips, A.; Dekkers, S.; Wijnhoven, S.W.P.; Sayre, P.G. Risk assessment frameworks for nanomaterials: Scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. The Framing of Decisions and the Psychology of Choice. In Environmental Impact Assessment, Technology Assessment, and Risk Analysis; Covello, V.T., Mumpower, J.L., Stallen, P.J.M., Uppuluri, V.R.R., Eds.; NATO ASI Series (Series G: Ecological Sciences); Springer: Berlin/Heidelberg, Germany, 1981; Volume 4. [Google Scholar]
- Jantunen, P.; Gottardo, S.; Crutzen, H. NANoREG Toolbox for the Safety Assessment of Nanomaterials; EUR 28676 EN; EU Data Portal: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Jantunen, P.; Gottardo, S.; Rasmussen, K.; Crutzen, H. An inventory of ready-to-use and publicly available tools for the safety assessment of nanomaterials. NanoImpact 2018, 12, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, N.; Sandman, P. Some Criteria for Evaluating Risk Messages. Risk Anal. 1993, 13, 103–114. [Google Scholar] [CrossRef]
- Grobe, A.; Schneider, C.; Schetula, V.; Rekic, M.; Nawrath, S. Nanotechnologien: Was Verbraucher Wissen Wollen; German Federal Association for Consumer Protection (vzbv): Berlin, Germany, 2008. [Google Scholar]
- Kasperson, R. Four questions for risk communication. J. Risk Res. 2014, 17, 1233–1239. [Google Scholar] [CrossRef]
- Rowe, G.; Frewer, L. Public Participation Methods: A Framework for Evaluation. Sci. Technol. Hum. Values 2000, 25, 3–29. [Google Scholar] [CrossRef]
- Aven, T.; Renn, O. Risk Management and Governance Concepts, Guidelines and Applications; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Subramanian, V.; Semenzin, E.; Hristozov, D.; Zondervan-van den Beuken, E.; Linkov, I.; Marcomini, A. Review of decision analytic tools for sustainable nanotechnology. Environ. Syst. Decis. 2015, 35, 29. [Google Scholar] [CrossRef]
- IRGC. Risk Governance of Nanotechnology Applications in Food and Cosmetics; Grobe, A., Renn, O., Jaeger, A., Eds.; International Risk Governance Council (IRGC): Geneva, Switzerland, 2008. [Google Scholar]
- Stone, V.; Pozzi-Mucelli, S.; Tran, L.; Aschberger, K.; Sabella, S.; Vogel, U.; Poland, C.; Balharry, D.; Fernandes, T.; Gottardo, S.; et al. ITS-NANO—Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part. Fibre Toxicol. 2014, 11, 9. [Google Scholar] [CrossRef]
- Hristozov, D.; Zabeo, A.; Alstrup Jensen, K.; Gottardo, S.; Isigonis, P.; Maccalman, L.; Critto, A.; Marcomini, A. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials. Nanotoxicology 2016, 10, 1215–1228. [Google Scholar] [CrossRef]
- Bos, P.; Gottardo, S.; Scott-Fordsmand, J.; van Tongeren, M.; Semenzin, E.; Fernandes, T.; Hristozov, D.; Hund-Rinke, K.; Hunt, N.; Irfan, M.A.; et al. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials. Int. J. Environ. Res. Public Health 2015, 12, 15007–15021. [Google Scholar] [CrossRef]
- Brouwer, D. Control Banding Approaches for Nanomaterials. Ann. Occup. Hyg. 2012, 56, 506–514. [Google Scholar]
- Liguori, B.; Hansen, S.; Baun, A.; Jensen, K. Control banding tools for occupational exposure assessment of nanomaterials—Ready for use in a regulatory context? NanoImpact 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Jovanovic, A.; Ahmad, M.; Quintero, F.A.; Porcari, A.; Borsella, E.; Hristozov, D.; Grieger, K.; Jensen, K. Comprehensive Analysis of Available Tools and Methodologies for Horizon Scanning; Deliverable 1.2 caLIBRAte Research Project; caLIBRAte: Copenhagen, Denmark, 2017. [Google Scholar]
- Owen, R.; Handy, R. Formulating the problems for environmental risk assessment of nanomaterials. Environ. Sci. Technol. 2007, 41, 5582–5588. [Google Scholar]
- Raban, Y.; Remes, M.; Schroder, S. Final Synthesis Report on Security Oriented Foresight Mapping of Outputs and Methods—Deliverable D3.4. 2015. Available online: https://cordis.europa.eu/project/rcn/185500/reporting/en (accessed on 4 May 2019).
- EU CORDIS. Final Report Summary—FORCE (FOResight Coordination for Europe); EU: Luxembourg, 2016. [Google Scholar]
- Habegger, B. Horizon Scanning in Government: Concept, Country Experience, and Models for Switzerland; Center for Security Studies ETH: Zurich, Switzerland, 2009. [Google Scholar]
- UK GOVT. Futurescaper Platform; Digital Marketplace: London, UK, 2017.
- NSCS. Risk Analysis and Horizon Scanning (RAHS). 2009. Available online: https://www.nscs.gov.sg/rahs-programme-office.html (accessed on 25 January 2019).
- Garnett, K.; Lickorish, F.; Rocks, S.; Prpich, G.; Rathe, A.; Pollard, S. Integrating horizon scanning and strategic risk prioritisation using a weight of evidence framework to inform policy decisions. Sci. Total Environ. 2016, 560–561, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Swiss RE. Swiss Re’s SONAR: New Emerging Risk Insight; Swiss RE: Zürich, Switzerland, 2016. [Google Scholar]
- Allianz Risk Pulse. Allianz Risk Barometer. 2017. Available online: https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/Allianz-Risk-Barometer-2017.pdf (accessed on 25 January 2019).
- Smita, S.; Gupta, S.; Bartonova, A.; Dusinska, M.; Gutleb, A.; Rahman, Q. Nanoparticles in the environment: Assessment using the causal diagram approach. Environ. Health 2012, 11 (Suppl. 1), 13. [Google Scholar] [CrossRef]
- Hristozov, D.; Gottardo, S.; Cinelli, M.; Isigonis, P.; Zabeo, A.; Critto, A.; van Tongeren, M.; Tran, L.; Marcomini, A. Application of a quantitative weight of evidence approach for ranking and prioritising occupational exposure scenarios for titanium dioxide and carbon nanomaterials. Nanotoxicology 2013, 8, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Hristozov, D.; Zabeo, A.; Foran, C.; Isigonis, P.; Critto, A.; Marcomini, A.; Linkov, I. A weight of evidence approach for hazard screening of engineered nanomaterials. Nanotoxicology 2014, 8, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Tervonen, T.; Linkov, I.; Figueira, J.; Steevens, J.; Chappell, M.; Merad, M. Risk-based classification system of nanomaterials. J. Nanopart. Res. 2009, 11, 757–766. [Google Scholar] [CrossRef]
- Grieger, K.; Redmon, J.; Money, E.; Widder, M.; van der Schalie, W.; Beaulieu, S.; Womack, D. A relative ranking approach for nano-enabled applications to improve risk-based decision making: A case study of Army materiel. Environ. Syst. Decis. 2015, 35, 42–53. [Google Scholar] [CrossRef]
- Askham, C. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2011. [Google Scholar]
- Askham, C.; Gade, A.; Hanssen, O. Combining REACH, environmental and economic performance indicators for strategic sustainable product development. J. Clean. Prod. 2012, 35, 71–78. [Google Scholar] [CrossRef]
- Askham, C.; Gade, A.; Hanssen, O. Linking chemical risk information with life cycle assessment in product development. J. Clean. Prod. 2013, 51, 196–204. [Google Scholar] [CrossRef]
- Beaudrie, C.; Kandlikar, M.; Gregory, R.; Long, G.; Wilson, T. Nanomaterial risk screening: A structured approach to aid decision making under uncertainty. Environ. Syst. Decis. 2015, 35, 88–109. [Google Scholar] [CrossRef]
- Hansen, S.; Baun, A.; Alstrup-Jensen, K. NanoRiskCat—A Conceptual Decision Support Tool for Nanomaterials; Danish Ministry of the Environment: Copenhagen, Denmark, 2011. [Google Scholar]
- Hansen, S.; Jensen, K.; Baun, A. NanoRiskCat: A conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J. Nanopart. Res. 2014, 16, 2195. [Google Scholar] [CrossRef]
- Collier, Z.A.; Kennedy, A.J.; Poda, A.R.; Cuddy, M.F.; Moser, R.D.; MacCuspie, R.I.; Harmon, A.; Plourde, K.; Haines, C.D.; Steevens, J.A. Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies. J. Nanopart. Res. 2015, 17, 155. [Google Scholar] [CrossRef]
- Paik, S.; Zalk, D.; Swuste, P. Application of a Pilot Control Banding Tool for Risk Level Assessment and Control of Nanoparticle Exposures. Ann. Occup. Hyg. 2008, 52, 419–428. [Google Scholar]
- Murashov, V.; Howard, J. Essential features for proactive risk management. Nat. Nanotechnol. 2009, 4, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Zalk, D.; Paik, S.; Swuste, P. Evaluating the Control Banding Nanotool: A qualitative risk assessment method for controlling nanoparticle exposures. J. Nanopart. Res. 2009, 11, 1685–1704. [Google Scholar] [CrossRef]
- Ostiguy, C.; Riediker, M.; Triolet, J.; Troisfontaines, P.; Vernez, D. Development of A Specific Control Banding Tool for Nanomaterials; French Agency for Food, Environmental and Occupational Health and Safety (ANSES): Maisons-Alfort, France, 2010. [Google Scholar]
- Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A. Development of a Control Banding Tool for Nanomaterials. J. Nanomater. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Jensen, K.; Saber, A.; Kristensen, H.; Liguori, B.; Jensen, A.; Koponen, I.; Wallin, H. NanoSafer vs. 1.1 Nanomaterial risk assessment using first order modeling. In Proceedings of the 6th International Symposium on Nanotechnology, Occupational and Environmental Health, Nagoya, Japan, 28–31 October 2013. [Google Scholar]
- Van Duuren-Stuurman, B.; Vink, S.; Verbist, K.; Heussen, H.; Brouwer, D.; Kroese, D.; Van Niftrik, M.F.J.; Tielemans, E.; Fransman, W. Stoffenmanager Nano Version 1.0: A Web-Based Tool for Risk Prioritization of Airborne Manufactured Nano Objects. Ann. Occup. Hyg. 2012, 56, 525–541. [Google Scholar]
- Höck, J.; Behra, R.; Bergamin, L.; Bourqui-Pittet, M.; Bosshard, C.; Epprecht, T.; Furrer, V.; Frey, S.; Gautschi, M.; Hofmann, H.; et al. Guidelines on the Precautionary Matrix for Synthetic Nanomaterials; Version 3.1; Federal Office of Public Health and Federal Office for the Environment: Berne, Switzerland, 2018. [Google Scholar]
- Sørensen, S.N.; Baun, A.; Burkard, M.; Dal Maso, M.; Hansen, S.F.; Harrison, S.; Hjorth, R.; Lofts, S.; Matzke, M.; Nowack, B.; et al. Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environ. Sci. Nano 2019, 6, 505–518. [Google Scholar] [CrossRef]
- Oosterwijk, T.; Stierum, R.; Franken, R.; Fransman, W.; Saamanem, A.; Kanerva, T.; Dal Maso, M.; Poikkimaki, M.; Jensen, K.; Liguori, B. Review of Current Hazard, Exposure and (Integrated) HRA Models Considering Their Input Requirements and Applicability at the Cooper Innovation Stage-Gates Defined; Deliverable 2.2 caLIBRAte Research Project; caLIBRAte: Copenhagen, Denmark, 2017. [Google Scholar]
- Hristozov, D.; Pizzol, L.; Basei, G.; Zabeo, A.; Mackevica, A.; Foss Hansen, S.; Gosens, I.; Cassee, F.R.; de Jong, W.; Koivisto, A.J.; et al. Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives. Nanotoxicology 2018, 12, 747–765. [Google Scholar] [CrossRef]
- Park, M.; Catalán, J.; Ferraz, N.; Cabellos, J.; Vanhauten, R.; Vázquez-Campos, S.; Janer, G. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes—Lessons learnt. Nanotoxicology 2018, 12, 1–25. [Google Scholar] [CrossRef]
- van Harmelen, T.; Zondervan-van den Beuken, E.; Brouwer, D.; Kuijpers, E.; Fransman, W.; Buist, H.; Ligthart, T.; Hincapié, I.; Hischier, R.; Linkov, I.; et al. LICARA nanoSCAN—A tool for the self-assessment of benefits and risks of nanoproducts. Environ. Int. 2016, 91, 150–160. [Google Scholar] [CrossRef]
- Gottschalk, F.; Nowack, B. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Integr. Environ. Assess. Manag. 2013, 9, 79–86. [Google Scholar] [CrossRef]
- Semenzin, E.; Lanzellotto, E.; Hristozov, D.; Critto, A.; Zabeo, A.; Giubilato, E.; Marcomini, A. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: The n-TiO2 case study. Environ. Toxicol. Chem. 2015, 34, 2644–2659. [Google Scholar] [CrossRef] [PubMed]
- Jeliazkova, N.; Chomenidis, C.; Doganis, P.; Fadeel, B.; Grafström, R.; Hardy, B.; Hastings, J.; Hegi, M.; Jeliazkov, V.; Kochev, N.; et al. The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanotechnol. 2015, 6, 1609–1634. [Google Scholar] [CrossRef] [PubMed]
- Niesmann, K.; Baron, M. ‘Nano to Go’—BAuA’s Latest Contribution to NanoValid; BAUA: Dresden, Germany, 2015. [Google Scholar]
- Meesters, J.; Koelmans, A.; Quik, J.; Hendriks, A.; van de Meent, D. Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: Model Definition and Evaluation. Environ. Sci. Technol. 2014, 48, 5726–5736. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cohen, Y. Multimedia Environmental Distribution of Engineered Nanomaterials. Environ. Sci. Technol. 2014, 48, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Quik, J.; de Klein, J.; Koelmans, A. Spatially explicit fate modelling of nanomaterials in natural waters. Water Res. 2015, 80, 200–208. [Google Scholar] [CrossRef]
- De Klein, J.; Quik, J.; Bäuerlein, P.; Koelmans, A. Towards validation of the NanoDUFLOW nanoparticle fate model for the river Dommel, The Netherlands. Environ. Sci. Nano 2016, 3, 434–441. [Google Scholar] [CrossRef]
- Dumont, E.; Williams, R.; Keller, V.; Voß, A.; Tattari, S. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrol. Sci. J. 2012, 57, 1378–1403. [Google Scholar] [CrossRef]
- Dumont, E.; Johnson, A.; Keller, V.; Williams, R. Nano silver and nano zinc-oxide in surface waters—Exposure estimation for Europe at high spatial and temporal resolution. Environ. Pollut. 2015, 196, 341–349. [Google Scholar] [CrossRef]
- Liu, H.; Bilal, M.; Lazareva, A.; Keller, A.; Cohen, Y. Simulation tool for assessing the release and environmental distribution of nanomaterials. Beilstein J. Nanotechnol. 2015, 6, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Scholz, R.W.; Nowack, B. Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environ. Model. Softw. 2010, 25, 320–332. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Possibilities and limitations of modelling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 2010, 29, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, R.; Molander, S.; Sandén, B. Impacts of a Silver-Coated Future: Particle Flow Analysis of Silver Nanoparticles. J. Ind. Ecol. 2011, 15, 844–854. [Google Scholar] [CrossRef]
- Arvidsson, R.; Molander, S.; Sandén, B.; Hassellöv, M. Challenges in Exposure Modeling of Nanoparticles in Aquatic Environments. Hum. Ecol. Risk Assess. Int. J. 2011, 17, 245–262. [Google Scholar] [CrossRef]
- Bornhöft, N.; Sun, T.; Hilty, L.; Nowack, B. A dynamic probabilistic material flow modeling method. Environ. Model. Softw. 2016, 76, 69–80. [Google Scholar] [CrossRef]
- Boxall, A.B.; Chaudhry, Q.; Sinclair, C.; Jones, A.; Aitken, R.; Jefferson, B.; Watts, C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles; Central Science Laboratory, Department of the Environment and Rural Affairs: London, UK, 2007. [Google Scholar]
- Mueller, N.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008, 42, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Riviere, J.E. Pharmacokinetics and Biodistribution of Nanomaterials. In Nanotoxicology: Progress toward Nanomedicine, 2nd ed.; Riviere, J.E., Monteiro-Riviere, N., Tran, C., Vesterdal, L., Eds.; CRC Press: Boca Raton, FL, USA, 2014; p. 502. [Google Scholar]
- Anjilvel, S.; Asgharian, B. A Multiple-Path Model of Particle Deposition in the Rat Lung. Fundam. Appl. Toxicol. 1995, 28, 41–50. [Google Scholar] [CrossRef]
- RIVM. Multiple Path Particle Dosimetry Model (MPPD v 1.0): A Model for Human and Rat Airway Particle Dosimetry; RIVM: Bilthoven, The Netherlands, 2002. [Google Scholar]
- ECETOC. Targeted Risk Assessment (TRA). 2017. Available online: http://www.ecetoc.org/tools/targeted-risk-assessment-tra/ (accessed on 18 January 2019).
- Delmaar, J.E.; van der Zee Park, M.; van Engelen, J.G.M. ConsExpo—Consumer Exposure and Uptake Models—Program Manual; RIVM: Bilthoven, The Netherlands, 2006. [Google Scholar]
- Koch, W.; Behnke, W.; Berger-Preiß, E.; Kock, H.; Gerling, S.; Hahn, S.; Schröder, K. BAuA—Repositorium—Validation of An EDP Assisted Model for Assessing Inhalation Exposure and Dermal Exposure during Spraying Processes—Bundesanstalt für Arbeitsschutz und Arbeitsmedizin; BAUA: Dresden, Germany, 2012. [Google Scholar]
- Zaleski, R.; Qian, H.; Zelenka, M.; George-Ares, A.; Money, C. European solvent industry group generic exposure scenario risk and exposure tool. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 27–35. [Google Scholar] [CrossRef]
- Asbach, C.; Kuhlbusch, T.A.J.; Kaminski, H.; Stahlmecke, B.; Plitzko, S.; Götz, U.; Dahmann, D. Standard Operation Procedures for assessing exposure to nanomaterials, following a tiered approach. Nano Gem 2012, 1–90. [Google Scholar]
- Marvin, H.; Bouwmeester, H.; Bakker, M.; Kroese, E.; van de Meent, D.; Bourgeois, F.; Lokers, R.; van der Ham, H.; Verhelst, L. Exploring the development of a decision support system (DSS) to prioritize engineered nanoparticles for risk assessment. J. Nanopart. Res. 2013, 15, 1839. [Google Scholar] [CrossRef]
- Safe Work Australia. Work Health and Safety Assessment Tool for Handling Engineered Nanomaterials; Safe Work Australia: Canberra, Australia, 2010.
- Money, E.; Reckhow, K.; Wiesner, M. The use of Bayesian networks for nanoparticle risk forecasting: Model formulation and baseline evaluation. Sci. Total Environ. 2012, 426, 436–445. [Google Scholar] [CrossRef]
- Money, E.; Barton, L.; Dawson, J.; Reckhow, K.; Wiesner, M. Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver. Sci. Total Environ. 2014, 473–474, 685–691. [Google Scholar] [CrossRef]
- Reihlen, A.; Jepsen, D. Discussion and Results of the German NanoCommission’s Work and the Stakeholder Dialogue “Risk Management in the Nano World”; German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety: Hamburg, Germany, 2012.
- Genaidy, A.; Sequeira, R.; Rinder, M.; A-Rehim, A. Risk analysis and protection measures in a carbon nanofiber manufacturing enterprise: An exploratory investigation. Sci. Total Environ. 2009, 407, 5825–5838. [Google Scholar] [CrossRef]
- Sellers, K. Balancing the Risks and Rewards. In Nanotechnology and the Environment; Sellers, K., Sellers, J.K., Mackay, C., Bergeson, L.L., Clough, S.R., Hoyt, M., Chen, J., Henry, K., Eds.; CRC Press: Boca Raton, FL, USA, 2009; p. 281. [Google Scholar]
- Robichaud, C.O.; Tanzil, D.; Weilenmann, U.; Wiesner, R.M. Relative Risk Analysis of Several Manufactured Nanomaterials: An Insurance Industry Context. Environ. Sci. Technol. 2005, 39, 8985–8994. [Google Scholar] [CrossRef]
- Noorlander, C.; Bekker, C.; Soeteman-Hernandez, L.; Sabella, S.; Quik, J.; Peijnenburg, W.; Prina-Mello, A.; Sips, A. NANoREG Deliverable D6.4: Inventory of Existing Regulatory Accepted Toxicity Tests Applicable for Safety Screening of MNMs; RIVM: Bilthoven, The Netherlands, 2016. [Google Scholar]
- TEMAS & IPC. ProSafe Safe-by-Design (SbD) Implementation Concept Final; RIVM: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Widler, T.; Meili, C.; Semenzin, E.; Subramanian, V.; Zabeo, A.; Hristozov, D.; Marcomini, A. Organisational Risk Management of Nanomaterials Using SUNDS: The Contribution of CENARIOS®; Widler, T., Meili, C., Semenzin, E., Subramanian, V., Zabeo, A., Hristozov, D., Marcomini, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Linkov, I.; Trump, B.D.; Anklam, E.; Berube, D.; Boisseasu, P.; Cummings, C.; Ferson, S.; Florin, M.V.; Goldstein, B.; Hristozov, D.; et al. Comparative, collaborative, and integrative risk governance for emerging technologies. Environ. Syst. Decis. 2018, 38, 170–176. [Google Scholar] [CrossRef]
Criterion | Description/Justification | Selected References |
---|---|---|
C1: Uncertainty analysis | Clearly communicating the uncertainty and variability in modeling results through sound uncertainty analysis greatly helps decision-making. It could be otherwise easily misled by overconfident communication of uncertain risk governance results. If uncertainties are large and deeply embedded, more communication will be needed. | [7,15,22,28,29] |
C2: Structured decision-making | The participation exercise should use/provide appropriate mechanisms for structuring and displaying the decision-making process. | [24] |
C3: Fair and knowledgeable communication process | Accordingly, the scope of risk communication should be broadened to internalize conflicting issues of concern and decision-makers should deepen their analysis to address the embedding of risk issues in value and lifestyle structures. | [23] |
C4: Easy to use/understand, user-friendliness | Tools that are easy to use and provide outputs that are easy to assess and do not require specific expertise for their application. Information should be provided clearly to avoid arising misinterpretation. User-friendly tools are particularly relevant for Small and Medium Enterprises (SME) as those companies often do not have staff with experience or specific training suited to apply sophisticated protocols or models and understand the outcomes. | [7,15,26] |
C5: Quantitative information | Quantitative tools estimate numerical values for consequences and their probabilities, in specific units defined when developing the context. However, this requires quantitative input information to function and they cannot be easily applied in data-poor situations, which reduces their overall applicability and thus the available risk information that could be communicated to stakeholders. | [7,15,16,26,30] |
C6: Documented applications—Trustworthiness | Documented applications are the best way to test a tool, confirm its functionality, and understand its strengths and limitations. Trustworthiness of input or output sources is important. | [7,15,16,30] |
C7: Transparency of application—process | To make it easy for stakeholders to quickly comprehend how specific data points and decision criteria influence decision-making. The process should be transparent so that the stakeholders can see what is going on and how decisions are being made. | [7,22,24,26] |
C8: Comprehension | Does the audience understand the content of the communication? Often a neglected aspect in the process of communicating the results of risk governance processes, making it hard for stakeholders to exploit the valuable information that is available from the application of the tools. | [21] |
C9: Influence on final policy | The output of the procedure should have a genuine impact on policy. | [24] |
Criteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tool | Easy to Use/Understand, User-Friendliness | Quantitative Information | Uncertainty Analysis | Documented Applications/Trustworthiness | Transparency of Application/Process | Comprehension | Influence on Final Policy | Structured Decision-Making | Fair and Knowledgeable Communication Process |
iNTeg-Risk Radar | + | − | − | + | + | + | − | NA | + |
Nano-Risk Radar | + | − | − | − | + | + | ± | + | + |
IKnow | + | − | − | − | + | + | ± | + | + |
FORCE IDSS | + | − | − | − | + | + | − | + | + |
UK Gov Horizon Scanning Centre | + | − | − | − | + | + | − | + | + |
Futurescaper’s HS platform | + | − | − | − | + | + | − | + | + |
RAHS | + | − | − | − | + | + | − | + | + |
Cranfield U Horizon Scanning | + | − | − | − | + | + | − | + | + |
Swiss Re SONAR | + | − | − | − | + | + | − | + | + |
Allianz Risk Barometer | + | − | − | − | + | + | − | + | + |
Causal diagram assessment | + | − | − | + | + | ± | − | + | + |
MCDA procedure for prioritization of Occupational Risks from NMs | - | + | + | + | + | + | − | + | + |
MCDA procedure for prioritization of occupational exposure scenarios of NMs | - | + | + | + | + | + | − | + | + |
MCDA procedure for hazard screening of ENMs | - | + | + | + | + | + | − | + | + |
Stochastic multicriteria acceptability analysis (SMAA-TRI) | - | + | + | +- | + | + | − | + | + |
Tool for ENM-Application Pair Risk Ranking (TEARR) | + | ± | − | − | + | + | − | + | + |
Screening Tree Tool | + | − | − | + | + | + | − | + | + |
NRST (Nanomaterial Risk-Screening Tool) | + | + | − | + | + | + | − | + | + |
NanoRiskCat | + | − | − | + | + | + | ± | + | + |
NanoGRID | + | ± | − | + | + | + | ± | + | + |
CB NanoTool | ± | − | − | − | + | + | ± | + | + |
ANSES CB nanotool | ± | ± | − | + | + | + | ± | + | + |
NanoSafer CB Tool | + | + | − | + | + | + | ± | + | + |
Stoffenmanager Nano | ± | − | − | + | + | + | ± | + | + |
Precautionary Matrix | + | − | ± | − | ± | ± | ± | + | + |
Criteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tool | Easy to use/Understand, User-friendliness | Quantitative Information | Uncertainty Analysis | Documented Applications/Trustworthiness | Transparency of Application/Process | Comprehension | Influence on Final Policy | Structured Decision-Making | Fair and Knowledgeable Communication Process |
SUNDS | + | + | + | + | + | + | ± | + | + |
GUIDEnano | + | + | + | - | + | + | ± | + | + |
NanoSafer | + | + | − | + | + | + | ± | + | + |
Stoffenmanager Nano | ± | − | − | + | + | + | ± | + | + |
LICARA nanoscan | + | ± | − | − | + | + | − | + | + |
Species Sensitivity Distribution (SSD) for nanomaterials | + | + | − | + | + | + | − | + | + |
REACHnano ToolKit | + | + | ± | + | + | + | − | − | + |
NANEX Exposure Scenario Data Library | + | − | NA | NA | NA | + | − | NA | NA |
AMBIT2 tool | ± | + | − | − | NA | ± | NA | NA | NA |
Nano to go! | + | − | NA | NA | NA | + | ± | NA | NA |
SimpleBox4Nano (SB4N) | − | + | − | + | + | ± | − | − | + |
MendNano | − | + | − | + | + | ± | − | − | + |
NanoDUFLOW | − | + | − | + | + | ± | − | − | + |
GWAVA with water quality module | − | + | − | + | + | ± | − | − | + |
RedNano | − | + | − | + | + | ± | − | − | + |
Stochastic Materials Flow Model | − | + | + | + | + | ± | − | − | + |
Explorative particle flow analysis (PFA) | ± | + | + | + | + | ± | − | − | + |
Dynamic probabilistic material flow model (DP-MFA) | ± | + | + | + | + | ± | − | − | + |
MFA model 1 | ± | + | − | + | + | ± | − | − | + |
MFA model 2 | − | + | ± | + | + | ± | − | − | + |
PBPK model | − | + | − | + | + | ± | − | − | + |
Multiple-Path Particle Dosimetry Model (MPPD v 2.11) | − | + | − | + | + | ± | − | − | + |
ECETOC TRA v3.1 | − | + | − | + | + | ± | − | − | + |
ConsExpo nano | − | + | − | + | + | ± | − | − | + |
BAUA Sprayexpo 2.3 | − | + | − | + | + | ± | − | − | + |
EGRET2 | − | + | − | + | + | ± | − | − | + |
SOP Tiered Approach for the assessment of exposure to airborne nano-objects in workplaces | ± | − | − | − | + | ± | + | + | + |
NanoNextNL DSS (under development) | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Work health and safety assessment tool for handling engineered nanomaterials | + | + | − | − | + | + | − | − | + |
FINE (Forecasting the Impacts of Nanomaterials in the Environment) | − | + | ± | − | + | + | − | + | + |
NanoCommission assessment tool | − | − | − | + | + | − | − | + | + |
CB NanoTool | ± | − | − | − | + | + | ± | + | + |
ANSES CB Nanotool | ± | ± | − | + | + | + | ± | + | + |
Precautionary Matrix | + | − | ± | − | ± | ± | ± | + | + |
NanoRiskCat | + | − | − | + | + | + | ± | + | + |
NanoGRID | + | +- | − | + | + | + | ± | + | + |
Criteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Tool | Easy to Use/Understand, User-Friendliness | Quantitative Information | Uncertainty Analysis | Documented Applications/Trustworthiness | Transparency of Application/Process | Comprehension | Influence on Final Policy | Structured Decision-Making | Fair and Knowledgeable Communication Process |
SUNDS | + | + | + | + | + | + | ± | + | + |
NanoSafer | + | + | − | + | + | + | ± | + | + |
Stoffenmanager Nano | ± | − | − | + | + | + | ± | + | + |
nanoinfo.org | + | + | − | + | + | + | ± | + | + |
Nano-specific Risk Management Library | + | - | NA | NA | NA | + | − | NA | NA |
Low-cost/evidence-based tool | + | ± | − | ± | + | + | − | − | + |
XL Insurance Database | + | ± | − | + | ± | ± | ± | ± | + |
ProSafe SbD Implementation Concept | + | NA | NA | NA | + | + | ± | NA | + |
CB NanoTool | ± | − | − | − | + | + | ± | + | + |
ANSES CB Nanotool | ± | + | − | + | + | + | ± | + | + |
Precautionary Matrix | + | − | ± | − | ± | ± | ± | + | + |
NanoRiskCat | + | − | − | + | + | + | ± | + | + |
CENARIOS | + | − | − | + | + | + | − | + | + |
# | Typology/Sector | Criteria | Method-Technique-Action and Description |
---|---|---|---|
1 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Multi-Attribute Value Theory (MAVT): MCDA methodology that uses Value (Utility) functions to identify the most preferred alternative or to rank order the alternatives |
2 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Outranking methods: They are based on the concept that an alternative may be dominant, with a certain degree, over another one |
3 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Multi-objective optimization: An area of MCDA concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously |
4 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Analytic hierarchy process (AHP): MCDA methodology that uses decomposition of the decision problem into a hierarchy of subproblems and evaluation of the relative importance of its various elements by pairwise comparisons |
5 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Fuzzy logic: Introduces a formalization of vagueness and the notion of a degree of satisfaction of an object instead of an absolute evaluation |
6 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Decision trees (decision analysis): A tool to model decisions, outcomes chances, and their possible consequences |
7 | Decision Analysis/MCDA methodologies | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Value of Information (VoI): A methodology that can be used in tiers to explore uncertainty in risk assessment and decision-making |
8 | Decision Analysis/Mental modeling | C9 | Stakeholder profiling/need identification: The process of collecting and reviewing the opinions of relevant stakeholders with respect to the features, capabilities, usability of a decision-support tool |
9 | Decision Analysis/Mental modeling | C9 | Interviews/Focus Groups/Influence diagrams: Different techniques to perform mental modeling methodologies and present results |
10 | Decision Analysis/Software development | C2, C6, C7 | Decision-Support Systems: Building dedicating software for supporting decision-making |
11 | Risk Assessment-Management/Models | C3, C5 | Link-integration of models: Link or integration of various types of models (e.g., ERA-HH-exposure read-across grouping) in a decision-support tool |
12 | Risk Assessment-Management/Models | C3, C5 | Full life cycle/Cooper Stage Gate: Models and tools to cover the full life cycle (ERA, HH, LCIA, Social, EA, Risk Control) and connected to Cooper Stage Gate model. Provide multiple options for the user |
13 | Risk Assessment-Management/Risk management Measures | C2, C3, C6 | Types of Risk Management measures: Link-Integration of RMMs (e.g., Inventory of Technological Alternatives and Risk Management Measures (TARMMs), personalized risk management measures defined by the user or connection to the Exposure Control Efficacy Library (ECEL) database) |
14 | Risk Assessment-Management/Usability | C1, C2, C3, C4, C5, C7, C8 | Automatic conversion system: Introduction of an automatic conversion system, to improve usability of the system |
15 | Risk Assessment-Management/Usability | C1, C2, C3, C4, C5, C7, C8 | Quantal data: Support for quantal data in Human Health Hazard Assessment |
16 | Risk Assessment-Management/Usability | C1, C2, C3, C4, C5, C7, C8 | Nano-specific ontologies: A formal way to describe taxonomies and classification networks, essentially defining the structure of knowledge for various domains, they can be represented and shared through the recognized standard Web Ontology Language |
17 | Risk Assessment-Management/Usability | C1, C2, C3, C4, C5, C7, C8 | Assessment tree interface: Visual flow of sections (tiered approach/connected lifecycle models) |
18 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Multiple interfaces: Web application accessible from any web browser, which can also be downloaded and installed in an intranet server. Also supports solutions to the confidentiality issue |
19 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Graphical User Interfaces (GUIs): Minimum requirement for modern software-tools |
20 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Bugs tracking system: Dedicated system, for efficiently improving Decision-Support Tools |
21 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Feature request system: Dedicated system, for efficiently improving Decision-Support Tools |
22 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Hosting environment: A crucial component for embedding models in a decision-support tool and allowing smooth operations for the user |
23 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Appearance and usability of the web application: Smartly designed applications allow increased user-friendliness and improve risk/uncertainty communication |
24 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Public pages: System users can select information for public viewing, allowing communication and partnerships with other stakeholders |
25 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Data extraction/migration/interoperability features: Various import, migration, and export features increase user-friendliness of the systems and interoperability |
26 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Easy registration/Multiple login methods: Improved usability of a system through multiple ways of identifying users and allowing them to register to the system |
27 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Manual/Wiki: User guides in the form of a manual document or documented wiki pages can be used as technical communication documents |
28 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Guidance: Interactive guidance of the user to the functionalities of a system |
29 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | User communication: Systems can use different types of communication protocols for informing users |
30 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Case study examples: Documented applications available to the user for experimentation and information sharing |
31 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Pairing of functionalities with stakeholder profiling: Driving software developments by implementing identified features through the mental modeling processes |
32 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Expandable system (modular): System designed to handle multiple material and needs in the future |
33 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Data gaps: Cover lack of data with modeling techniques |
34 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | API communication: Software to software communication |
35 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Type of portal: HUB vs Integrated software |
36 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Models: Basic characteristics of models for decision support: Multiple, Fast, Tailored, Embedded, Peer-reviewed, Integrated, Well-known |
37 | Software development/Features | C1, C2, C3, C4, C5, C6, C7, C8, C9 | Public projects: Availability of results to communities |
38 | Statistical methods/Methodology | C1, C5 | Decision Trees (machine learning): A method that uses a tree-like model of decisions and their possible consequences for identifying a strategy most likely to reach a goal |
39 | Statistical methods/Methodology | C1, C5 | Random forests: An ensemble learning method for classification, regression, and other tasks that operates by constructing a multitude of decision trees |
40 | Statistical methods/Methodology | C1, C5 | Sensitivity analysis: Evaluates the effect of changes in input values or assumptions on a model’s results |
41 | Statistical methods/Methodology | C1, C5 | Uncertainty analysis: Investigates the effects of lack of knowledge and other potential sources of error in the model |
42 | Statistical methods/Methodology | C1, C5 | Logistic regression: A predictive regression analysis that can be used to describe data and to explain the relationship between one dependent variable and one or more independent variables |
43 | Statistical methods/Methodology | C1, C5 | Neural networks: An alternative to regression models and other related statistical techniques in the areas of statistical prediction and classification |
44 | Statistical methods/Methodology | C1, C5 | Stable results: Calibration of models to be used in decision-support activities (sensitivity analysis and performance testing) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isigonis, P.; Hristozov, D.; Benighaus, C.; Giubilato, E.; Grieger, K.; Pizzol, L.; Semenzin, E.; Linkov, I.; Zabeo, A.; Marcomini, A. Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials 2019, 9, 696. https://doi.org/10.3390/nano9050696
Isigonis P, Hristozov D, Benighaus C, Giubilato E, Grieger K, Pizzol L, Semenzin E, Linkov I, Zabeo A, Marcomini A. Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials. 2019; 9(5):696. https://doi.org/10.3390/nano9050696
Chicago/Turabian StyleIsigonis, Panagiotis, Danail Hristozov, Christina Benighaus, Elisa Giubilato, Khara Grieger, Lisa Pizzol, Elena Semenzin, Igor Linkov, Alex Zabeo, and Antonio Marcomini. 2019. "Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation" Nanomaterials 9, no. 5: 696. https://doi.org/10.3390/nano9050696
APA StyleIsigonis, P., Hristozov, D., Benighaus, C., Giubilato, E., Grieger, K., Pizzol, L., Semenzin, E., Linkov, I., Zabeo, A., & Marcomini, A. (2019). Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials, 9(5), 696. https://doi.org/10.3390/nano9050696