Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, J.K.; Son, D.; Kim, J.; Yoo, Y.J.; Lee, G.J.; Wang, L.; Choi, M.K.; Yang, J.; Lee, M.; Do, K.; et al. Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Adv. Funct. Mater. 2017, 6, 1605286. [Google Scholar] [CrossRef]
- Wang, G.; Huang, W.; Eastham, N.D.; Fabiano, S.; Manley, E.F.; Zeng, L.; Wang, B.; Zhang, X.N.; Chen, Z.H.; Li, R.; et al. Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. Proc. Natl. Acad. Sci. USA 2017, 47, 10066–10073. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Gu, C.D.; Wang, X.L.; Tu, J.P. Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision. J. Mater. Chem. A 2017, 18, 8209–8229. [Google Scholar] [CrossRef]
- Pu, X.; Song, W.X.; Liu, M.M.; Sun, C.W.; Du, C.H.; Jiang, C.Y.; Huang, X.; Zou, D.C.; Hu, W.G.; Wang, Z.L. Wearable Power-Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiber-Shaped Dye-Sensitized Solar Cells. Adv. Energy Mater. 2016, 20, 1601048. [Google Scholar] [CrossRef]
- Wang, X.G.; Peng, W.B.; Yu, R.M.; Zou, H.Y.; Dai, Y.J.; Zi, Y.L.; Wu, C.S.; Li, S.T.; Wang, Z.L. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect. Nano Lett. 2017, 6, 3718–3724. [Google Scholar] [CrossRef] [PubMed]
- Boonsorn, W.; Watcharamaisakul, S.; Golman, B. Fabrication of Al2O3/ZrO2 Micro/Nano Composites Using Powder Alkoxide Mixtures. Adv. Mater. Res. 2014, 931, 132–136. [Google Scholar] [CrossRef]
- Gu, L.; Cui, N.Y.; Liu, J.M.; Zheng, Y.B.; Bai, S.; Qin, Y. Packaged triboelectric nanogenerator with high endurability for severe environments. Nanoscale 2015, 7, 18049–18053. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.X.; Han, C.B.; Gu, G.Q.; Chen, J.; Yang, Z.W.; Jiang, T.; He, C.; Wang, Z.L. Temperature Effect on Performance of Triboelectric Nanogenerator. Adv. Eng. Mater. 2017, 12, 1700275. [Google Scholar] [CrossRef]
- Xi, Y.; Guo, H.Y.; Zi, Y.L.; Li, X.G.; Wang, J.; Deng, J.N.; Li, S.M.; Hu, C.G.; Cao, X.; Wang, Z.L. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor. Adv. Energy Mater. 2017, 12, 1602397. [Google Scholar] [CrossRef]
- Liu, Z.F.; Chen, Y.X.; Zhuo, R.Q.; Jia, H.J. Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling. Appl. Energy 2018, 210, 1113–1125. [Google Scholar] [CrossRef]
- Khan, A.S.M.; Verzijlbergh, R.A.; Sakinci, O.C.; De Vries, L.J. How do demand response and electrical energy storage affect (the need for) a capacity market. Appl. Energy 2018, 214, 39–62. [Google Scholar] [CrossRef]
- Wei, G.; Bi, Y.; Li, X.; Xu, D.; Xu, W.; Yang, L.; Qin, Y.; Guo, H.; Zhao, X.; Chen, X.; et al. Self-powered hybrid flexible nanogenerator and its application inbionic micro aerial vehicles. Nano Energy 2018, 54, 10–16. [Google Scholar] [CrossRef]
- Zhang, X.S.; Han, M.D.; Kim, B.; Bao, J.F.; Brugger, J.; Zhang, H.X. All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 2018, 47, 410–426. [Google Scholar] [CrossRef]
- Li, X.H.; Lin, Z.H.; Cheng, G.; Wen, X.N.; Liu, Y.; Niu, S.M.; Wang, Z.L. 3D Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor. ACS Nano 2014, 10, 10674–10681. [Google Scholar] [CrossRef]
- Wu, C.S.; Ding, W.B.; Liu, R.Y.; Wang, J.Y.; Wang, A.C.; Wang, J.; Li, S.M.; Zi, Y.L.; Wang, Z.L. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater. Today 2018, 21, 216–222. [Google Scholar] [CrossRef]
- Tang, W.; Han, C.B.; Zhang, C.; Zhang, Z.L. Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 2014, 9, 121–127. [Google Scholar] [CrossRef]
- Zhang, X.S.; Brugger, J.; Kim, B. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 2016, 20, 37–47. [Google Scholar] [CrossRef]
- Li, X.H.; Yeh, M.H.; Lin, Z.H.; Guo, H.Y.; Yang, P.K.; Wang, J.; Wang, S.H.; Yu, R.M.; Zhang, T.J.; Wang, Z.L. Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS Nano 2015, 9, 11056–11063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Han, M.D.; Meng, B.; Zhang, H.X. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 2015, 11, 304–322. [Google Scholar] [CrossRef]
- Xia, K.Q.; Zhu, Z.Y.; Zhang, H.Z.; Du, C.L.; Xu, Z.W.; Wang, R.J. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 2018, 50, 571–580. [Google Scholar] [CrossRef]
- Guo, H.Y.; Yeh, M.H.; Lai, Y.C.; Zi, Y.L.; Wu, C.S.; Wen, Z.; Hu, C.G.; Wang, Z.L. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano 2016, 11, 10580–10588. [Google Scholar] [CrossRef]
- Yang, P.K.; Lin, Z.H.; Pradel, K.C.; Lin, L.; Li, X.H.; Wen, X.N.; He, J.H.; Wang, Z.L. Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors. ACS Nano 2015, 1, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Han, M.D.; Wang, R.X.; Meng, B.; Zhu, F.Y.; Sun, X.M.; Hu, W.; Wang, W.; Li, Z.H.; Zhang, H.X. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 2014, 4, 123–131. [Google Scholar] [CrossRef]
- Wang, X.F.; Yu, R.M.; Jiang, C.Y.; Hu, W.G.; Ding, Y.; Peng, W.B.; Li, S.; Wang, Z.L. Piezotronic Effect Modulated Heterojunction Electron Gas in AlGaN/AlN/GaN Heterostructure Microwire. Adv. Mater. 2016, 33, 7234–7242. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, Z.H.; Jing, Q.S.; Bai, P.; Pan, C.F.; Yang, Y.; Zhou, Y.S.; Wang, Z.L. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett. 2013, 2, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Wang, X.; Lin, L.; Guo, H.Y.; Wang, Z.L. Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns. ACS Nano 2016, 4, 4652–4659. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Han, Y.; Han, C.B.; Gao, C.Z.; Cao, X.; Wang, Z.L. Self-Powered Water Splitting Using Flowing Kinetic Energy. Adv. Mater. 2015, 2, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Chen, J.; Guo, H.Y.; Fan, X.; Wen, Z.; Yeh, M.H.; Yu, C.W.; Cao, X.; Wang, Z.L. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater. Adv. Mater. 2016, 28, 2983–2991. [Google Scholar] [CrossRef]
- Li, Z.L.; Chen, J.; Zhou, J.J.; Zheng, L.; Pradel, K.C.; Fan, X.; Guo, H.Y.; Wen, Z.; Yeh, M.H.; Yu, C.W.; et al. High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 2016, 22, 548–557. [Google Scholar] [CrossRef]
- Li, Z.L.; Shen, J.L.; Abdalla, L.; Yu, J.Y.; Ding, B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 36, 341–348. [Google Scholar] [CrossRef]
- Harada, M.; Araki, S.; Kimura, T.; Shibahara, T.; Lwasaki, T.; Okoshi, T.; Terada, S.; Terada, M. New separator with hydrophilic surface treatment for flooded-type lead-acid battery. J. Energy Storage 2018, 16, 197–202. [Google Scholar] [CrossRef]
- Deyab, M.A. Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J. Power Source 2018, 390, 176–180. [Google Scholar] [CrossRef]
- Ye, B.U.; Kim, B.J.; Ryu, J.; Lee, J.Y.; Bail, J.M.; Hong, K. Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: Electrochemical effect on output power. Nanoscale 2015, 39, 16189–16194. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Huang, T.; Wang, H.Z.; Zhang, B.M.; Zhu, M.F. Sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Nanoscale 2018, 10, 13730–13736. [Google Scholar] [CrossRef]
- Niu, S.M.; Wang, S.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.H.; Wang, Z.L. Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source. Energy Environ. Sci. 2013, 12, 3576–3583. [Google Scholar] [CrossRef]
- Zhang, H.L.; Yang, Y.; Su, Y.J.; Chen, J.; Hu, C.G.; Liu, Y.; Wong, C.P.; Bando, Y.S.; Wang, Z.L. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2013, 2, 693–701. [Google Scholar] [CrossRef]
- Guo, H.Y.; Pu, X.J.; Chen, J.; Meng, Y.; Yeh, M.H.; Liu, G.L.; Tang, Q.; Chen, B.; Liu, D. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Rob. 2018, 3, 2516. [Google Scholar] [CrossRef]
- Chen, X.X.; Han, M.D.; Chen, H.T.; Cheng, X.L.; Song, Y.; Su, Z.M.; Jiang, Y.G.; Zhang, H.X. A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF-TrFE) nanofibers. Nanoscale 2017, 9, 1263–1270. [Google Scholar] [CrossRef]
- Zhang, X.S.; Han, M.D.; Wang, R.X.; Zhu, F.Y.; Li, Z.H.; Wang, W.; Zhang, H.X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.L.; Li, Z.L.; Yu, J.Y.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288. [Google Scholar] [CrossRef]
- Liu, T.; Yin, Y.S.; Chen, S.G.; Chang, X.T.; Cheng, S. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim. Acta 2007, 52, 3709–3713. [Google Scholar] [CrossRef]
- Syrett, B.C. Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments—A literature review. Corrosion 1976, 6, 242–252. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, K.; Xu, Z.; Zhu, Z.; Zhang, H.; Nie, Y. Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems. Nanomaterials 2019, 9, 700. https://doi.org/10.3390/nano9050700
Xia K, Xu Z, Zhu Z, Zhang H, Nie Y. Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems. Nanomaterials. 2019; 9(5):700. https://doi.org/10.3390/nano9050700
Chicago/Turabian StyleXia, Kequan, Zhiwei Xu, Zhiyuan Zhu, Hongze Zhang, and Yong Nie. 2019. "Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems" Nanomaterials 9, no. 5: 700. https://doi.org/10.3390/nano9050700
APA StyleXia, K., Xu, Z., Zhu, Z., Zhang, H., & Nie, Y. (2019). Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems. Nanomaterials, 9(5), 700. https://doi.org/10.3390/nano9050700