Study on the Physico-Chemical Properties of the Si Nanowires Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kayes, B.M.; Atwater, H.A. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005, 97, 114302. [Google Scholar] [CrossRef]
- Stelzner, T.H.; Pietsch, M. Silicon nanowire-based solar cells. Nanotechnology 2008, 19, 295203. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Q.; He, D.; Li, J. Radial junction Si micro/nano- wire array photovoltaics: recent progress for theoretical investigation to experimental realization. Nano Energy 2014, 7, 10. [Google Scholar] [CrossRef]
- Garozzo, C.; La Magna, A.; Mannino, G.; Privitera, V.; Scalese, S.; Sberna, P.M.; Simone, F.; Puglisi, R.A. Competition between uncatalyzed and catalyzed growth during the plasma synthesis of Si nanowires and its role on their optical properties. J. Appl. Phys. 2013, 113, 214313. [Google Scholar] [CrossRef]
- Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 2010, 9, 239. [Google Scholar] [CrossRef]
- Krogstrup, P.; Jørgensen, H.I.; Heiss, M.; Demichel, O.; Holm, J.V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 2013, 7, 306. [Google Scholar] [CrossRef]
- Han, S.E.; Chen, G. Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells. Nano Lett. 2010, 10, 4692–4696. [Google Scholar] [CrossRef]
- Chen, W.; Roca i Cabarrocas, P. Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires. Appl. Phys. Lett. 2016, 109, 043108. [Google Scholar] [CrossRef]
- Putnam, M.C.; Filler, M.A. Secondary Ion Mass Spectrometry of Vapor–Liquid–Solid Grown, Au-Catalyzed, Si Wires. Nano Lett. 2008, 8, 3109. [Google Scholar] [CrossRef] [PubMed]
- Moutanabbir, O.; Senz, S. Synthesis of isotopically controlled metal-catalyzed silicon nanowires. Nano Today 2009, 4, 393–398. [Google Scholar] [CrossRef]
- Irrera, A.; Pecora, E. Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology 2009, 20, 135601. [Google Scholar] [CrossRef] [PubMed]
- Sivakov, V.; Andrӓ, G. Growth peculiarities during vapor–liquid–solid growth of silicon nanowhiskers by electron-beam evaporation. Appl. Phys. A. 2006, 85, 311. [Google Scholar] [CrossRef]
- Fontcuberta i Morral, A.; Arbiol, J. Synthesis of Silicon Nanowires with Wurtzite Crystalline Structure by Using Standard Chemical Vapor Deposition. Adv. Mater. 2007, 19, 1347. [Google Scholar] [CrossRef]
- Dhalluin, F.; Desré, P.J. Critical condition for growth of silicon nanowires. J. Appl. Phys. 2007, 102, 094906. [Google Scholar] [CrossRef]
- Zardo, I.; Conesa-Boj, S. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition. Appl. Phys. A 2010, 100, 287. [Google Scholar] [CrossRef]
- Kohen, D.; Tileli, V. Al catalyzed growth of silicon nanowires and subsequent in situ dry etching of the catalyst for photovoltaic application. Phys. Status Solidi A 2011, 208, 2676. [Google Scholar] [CrossRef]
- Kolasinski, K.W. Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Solid State Mater. Sci. 2006, 10, 182. [Google Scholar] [CrossRef]
- Ross, F.M.; Tersoff, J. Sawtooth Faceting in Silicon Nanowires. Phys. Rev. Lett. 2005, 95, 146104. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Ducati, C.; Neill, R.J.; Piscanec, S.; Ferrari, A.C.; Geng, J.; Dunin-Borkowski, R.E.; Robertson, J. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2003, 94, 6005. [Google Scholar] [CrossRef]
- Puglisi, R.A.; Mannino, G.; Scalese, S.; La Magna, A. Silicon Nanowires Obtained by Low Temperature Plasma-Based Chemical Vapor Deposition. Mater. Res. Soc. Symp. Proc. 2012, 1408, 139. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-Liquid-Solid mechanism of single crystal growth. Appl Phys. Lett. 1964, 4, 89. [Google Scholar] [CrossRef]
- Fortuna, S.A.; Li, X. Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond. Sci. Technol. 2010, 25. [Google Scholar] [CrossRef]
- Oh, S.H.; Benthem, K.V.; Molina, S.I.; Borisevich, A.Y.; Luo, W.; Werner, P.; Zakharov, N.D.; Kumar, D.; Pantelides, S.T.; Pennycook, S.J. Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires. Nano Lett. 2008, 4, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-W.; Milnes, A.G. Energy levels in Silicon. Ann. Rev. Mater. Sci. 1980, 10, 157–228. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981. [Google Scholar]
- Bullis, W.M. Properties of gold in silicon. Solid-State Electron. 1966, 9, 97. [Google Scholar] [CrossRef]
- Watanabe, K.; Munakata, C. Recombination lifetime in a gold-doped p-type silicon crystal. Semicond. Sci. Technol. 1993, 8, 230. [Google Scholar] [CrossRef]
- Allen, J.E.; Hemesath, E.; Perea, D.; Lensch-Falk, J.L.; Li, Z.Y.; Yin, F.; Gass, M.; Wang, P.; Bleloch, A.L.; Palmer, R.E.; et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Castaldini, A.; Fukata, N.; Cavallini, A. Electronic Level Scheme in Boron- and Phosphorus-Doped Silicon Nanowires. Nano Lett. 2012, 12, 3012. [Google Scholar] [CrossRef]
- Perraud, S.; Poncet, S.; Noël, S.; Levis, M.; Faucherand, P.; Rouvière, E.; Thony, P.; Jaussaud, C.; Delsol, R. Full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1568. [Google Scholar] [CrossRef]
- Bar-Sadan, M.; Barthel, J.; Shtrikman, H.; Houben, L. Direct Imaging of Single Au Atoms Within GaAs Nanowires. Nano Lett. 2012, 12, 2352. [Google Scholar] [CrossRef]
- Hessel, C.M.; Heitsch, A.T.; Korgel, B.A. Gold Seed Removal from the Tips of Silicon Nanorods. Nano Lett. 2010, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Chockla, A.M.; Bogart, T.D.; Hessel, C.M.; Klavetter, K.C.; Mullins, C.B.; Korgel, B.A. Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C. 2010, 116, 18079. [Google Scholar] [CrossRef]
- Ressel, B.; Prince, K.C.; Heun, S.; Homma, Y. Wetting of Si surfaces by Au–Si liquid alloys. J. Appl. Phys. 2003, 93, 3886. [Google Scholar] [CrossRef]
- Ferralis, N.; Maboudian, R.; Carraro, C. Temperature-induced self-pinning and nanolayering of AuSi eutectic droplets. J. Am. Chem. Soc. 2008, 130, 2681. [Google Scholar] [CrossRef]
- Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Buongiorno, C.; Spinella, C.; Grimaldi, M.G. Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology 2012, 23, 045601. [Google Scholar] [CrossRef]
- Woodruff, J.H.; Ratchford, J.B.; Goldthorpe, I.A.; McIntyre, P.C.; Chidsey, C.E.D. Vertically Oriented Germanium Nanowires Grown from Gold Colloids on Silicon Substrates and Subsequent Gold Removal. Nano Lett. 2007, 7, 1637. [Google Scholar] [CrossRef]
- Kawashima, T.; Saitoh, T.; Komori, K.; Fujii, M. Synthesis of Si nanowires with a thermally oxidized shell and effects of the shell on transistor characteristics. Thin Solid Films 2009, 517, 4520. [Google Scholar] [CrossRef]
- Hiraki, A. Low temperature reactions at Si/metal interfaces; what is going on at the interfaces? Surf. Sci. Rep. 1984, 3, 357. [Google Scholar] [CrossRef]
- Garozzo, C.; Filetti, A.; Bongiorno, C.; Magna, A.L.; Simone, F.; Puglisi, R.A. Room temperature evolution of gold nanodots deposited on silicon. Gold Bull. 2014, 185, 193. [Google Scholar] [CrossRef]
- Iwami, M.; Terada, T.; Tochihara, H.; Kubota, K.; Murata, Y. Alloyed interface formation in the Au-Si(111)2 × 1 system studied by photoemission spectroscopy. Surf. Sci. 1988, 194, 115. [Google Scholar] [CrossRef]
- Büttner, C.C.; Zakharov, N.D.; Pippel, E.; Gösele, U.; Werner, P. Gold-enhanced oxidation of MBE-grown silicon nanowires. Semicond. Sci. Technol. 2008, 23, 075040. [Google Scholar] [CrossRef]
- Gösele, U.; Frank, W.; Seeger, A. Mechanism and kinetics of the diffusion of gold in silicon. Appl. Phys. 1980, 23, 361–368. [Google Scholar] [CrossRef]
- Hiraki, A.; Lugujjo, E.; Mayer, J.W. Formation of silicon oxide over gold layers on silicon substrates. J. Appl. Phys. 1972, 43, 3643. [Google Scholar] [CrossRef]
- Sivakov, V.A.; Scholz, R.; Syrowatka, F.; Falk, F.; Gösele, U.; Christiansen, S.H. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution. Nanotech. 2009, 20, 405607. [Google Scholar] [CrossRef]
- Schmidt, V.; Senz, S.; Gosele, U. Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires. Nano Lett. 2005, 5, 931. [Google Scholar] [CrossRef] [PubMed]
- Buttner, C.; Langner, A.; Geuss, M.; Muller, F.; Werner, P.; Gosele, U. Formation of straight 10 nm diameter silicon nanopores in gold decorated silicon. ACS Nano 2009, 3, 3122. [Google Scholar] [CrossRef]
- Coffa, S.; Calcagno, L.; Campisano, S.U.; Talleri, G.; Ferla, G. Diffusion of ionimplanted gold in p-type silicon. J. Appl. Phys. 1988, 64, 6291. [Google Scholar] [CrossRef]
- Christiansen, S.H.; Chou, J.W.; Becker, M.; Sivakov, V.; Ehrhold, K.; Berger, A.; Chou, W.C.; Chuu, D.S.; Gösele, U. Fluorescence signals of core–shell quantum dots enhanced by single crystalline gold caps on silicon nanowires. Nanotechnology 2009, 20, 165301. [Google Scholar] [CrossRef]
- Pellegrino, G.; Condorelli, G.G.; Privitera, V.; Cafra, B.; Di Marco, S.; Alberti, A. Dye-Sensitizing of Self-Nanostructured Ti(:Zn)O 2 /AZO Transparent Electrodes by Self-Assembly of 5,10,15,20-Tetrakis(4- carboxyphenyl)porphyrin. J. Phys. Chem. C 2011, 115, 7760. [Google Scholar] [CrossRef]
- Wagner, C.D.; Davis, L.E.; Riggs, W.M. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1980, 2, 53. [Google Scholar] [CrossRef]
- Struthers, J.D. Solubility and Diffusivity of Gold, Iron, and Copper in Silicon. J. Appl. Phys. 1956, 27, 1560. [Google Scholar] [CrossRef]
Relative Intensity | As Grown | Au Etching | HF + Au Etching |
---|---|---|---|
Au% | 2.4 | 0.4 | <0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, R.A.; Bongiorno, C.; Borgh, G.; Fazio, E.; Garozzo, C.; Mannino, G.; Neri, F.; Pellegrino, G.; Scalese, S.; La Magna, A. Study on the Physico-Chemical Properties of the Si Nanowires Surface. Nanomaterials 2019, 9, 818. https://doi.org/10.3390/nano9060818
Puglisi RA, Bongiorno C, Borgh G, Fazio E, Garozzo C, Mannino G, Neri F, Pellegrino G, Scalese S, La Magna A. Study on the Physico-Chemical Properties of the Si Nanowires Surface. Nanomaterials. 2019; 9(6):818. https://doi.org/10.3390/nano9060818
Chicago/Turabian StylePuglisi, Rosaria A., Corrado Bongiorno, Giovanni Borgh, Enza Fazio, Cristina Garozzo, Giovanni Mannino, Fortunato Neri, Giovanna Pellegrino, Silvia Scalese, and Antonino La Magna. 2019. "Study on the Physico-Chemical Properties of the Si Nanowires Surface" Nanomaterials 9, no. 6: 818. https://doi.org/10.3390/nano9060818
APA StylePuglisi, R. A., Bongiorno, C., Borgh, G., Fazio, E., Garozzo, C., Mannino, G., Neri, F., Pellegrino, G., Scalese, S., & La Magna, A. (2019). Study on the Physico-Chemical Properties of the Si Nanowires Surface. Nanomaterials, 9(6), 818. https://doi.org/10.3390/nano9060818