In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells
Abstract
:1. Introduction
2. Experimental Approach
3. Results and Discussion
3.1. Characterization of the Crystallization of a CZTS Film
3.2. In-Depth Elemental Distribution in a CZTS Film
3.3. Identification of a Secondary Phase by XPS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, S.N.; Sung, S.J.; Son, D.H.; Kim, D.H.; Gansukh, M.; Cheong, H.; Kang, J.K. Solution-processed Cu2ZnSnS4 Absorbers Prepared by Appropriate Inclusion and Removal of Thiourea. RSC Adv. 2014, 4, 9118–9125. [Google Scholar] [CrossRef]
- Su, Z.H.; Tan, J.M.R.; Li, X.L.; Zeng, X.; Batabyal, S.K.; Wong, L.H. Cation Substitution of Solution-Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency. Adv. Energy Mater. 2015, 5, 1500682. [Google Scholar] [CrossRef]
- Hadke, S.H.; Levcenko, S.; Lie, S.; Hages, C.J.; Márquez, J.A.; Unold, T.; Wong, L.H. Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10%. Adv. Energy Mater. 2018, 8, 1802540. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Akhavan, V.A.; Goodfellow, B.W.; Panthani, M.G.; Steinhagen, C.; Harvey, T.B.; Stolle, C.J.; Korgel, B. Colloidal CIGS and CZTS Nanocrystals: A Precursor Route to Printed Photovoltaics. J. Solid State Chem. 2012, 189, 2–12. [Google Scholar] [CrossRef]
- Yoshida, S. Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%. Available online: http://www.solar-frontier.com/eng/news/2019/0117_press.html (accessed on 17 January 2019).
- Garcia-Llamas, E.; Merino, J.M.; Gunder, R.; Neldner, K.; Greiner, D.; Steigert, A.; Giraldo, S.; Izquierdo-Roca, V.; Saucedo, E.; León, M.; et al. Cu2ZnSnS4 Thin Film Solar Cells Grown by Fast Thermal Evaporation and Thermal Treatment. Sol. Energy 2017, 141, 236–241. [Google Scholar] [CrossRef]
- Kermadia, S.; Sali, S.; Zougar, L.; Boumaour, M.; Gunder, R.; Schorr, S.; Izquierdo-Roca, V.; Pérez-Rodríguez, A. An In-depth Investigation on the Grain Growth and the Formation of Secondary Phases of Ultrasonic-sprayed Cu2ZnSnS4 based Thin Films Assisted by Na Crystallization Catalyst. Sol. Energy 2018, 176, 277–286. [Google Scholar] [CrossRef]
- Babichuk, I.S.; Golovynskyi, S.; Brus, V.V.; Babichuk, I.V.; Datsenko, O.; Li, J.; Xu, G.W.; Golovynska, I.; Hreshchuk, O.M.; Orletskyi, I.G.; et al. Secondary Phases in Cu2ZnSnS4 Films Obtained by Spray Pyrolysis at different Substrate Temperatures and Cu Contents. Mater. Lett. 2018, 216, 173–175. [Google Scholar] [CrossRef]
- Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; Frahm, R.; Unold, T. Depth Distribution of Secondary Phases in Kesterite Cu2ZnSnS4 by Angle-resolved X-ray Absorption Spectroscopy. APL Mater. 2017, 5, 126106. [Google Scholar] [CrossRef]
- Scragg, J.J.; Ericson, T.; Kubart, T.; Edoff, M.; Platzer-Björkman, C. Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing. Chem. Mater. 2011, 23, 4625–4633. [Google Scholar] [CrossRef]
- Zhang, X.F.; Fu, E.G.; Wang, Y.H.; Zhang, C. Fabrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells. Nanomaterials 2019, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Roscher, H.H.; Labusch, R. Preparation and Properties of CuInSe2 Thin Films Produced by Selenization of Co-sputtered Cu-In films. Thin Solid Films 1994, 251, 116–120. [Google Scholar] [CrossRef]
- Khare, A.; Himmetoglu, B.; Cococcioni, M.; Aydil, E.S. First Principles Calculation of the Electronic Properties and Lattice Dynamics of Cu2ZnSn(S1−xSex)4. J. Appl. Phys. 2012, 111, 123704. [Google Scholar] [CrossRef]
- Prabhakaran, K.; Rao, C.N.R. A Combined EELS-XPS Study of Molecularly Chemisorbed Oxygen on Silver Surfaces: Evidence for Superoxo and Peroxo Species. Surf. Sci. 1987, 186, L575–L580. [Google Scholar] [CrossRef]
- Awadallah, O.; Cheng, Z. Study of the Fundamental Phase Formation Mechanism of Sol-gel Sulfurized Cu2ZnSnS4 Thin Films using in situ Raman Spectroscopy. Sol. Energy Sol. Cell 2018, 176, 222–229. [Google Scholar] [CrossRef]
- Tao, J.H.; Liu, J.F.; Chen, L.L.; Cao, H.Y.; Meng, X.K.; Zhang, Y.B.; Zhang, C.J.; Sun, L.; Yang, P.X.; Chu, J.H. 7.1% Efficient Co-electroplated Cu2ZnSnS4 Thin Film Solar Cells with Sputtered CdS Buffer Layers. Green Chem. 2016, 18, 550–557. [Google Scholar] [CrossRef]
- Caporali, S.; Tolstogouzov, A.; Teodoro, O.M.N.D.; Innocenti, M.; Benedetto, F.D.; Cinotti, S.; Picca, R.A.; Sportelli, M.C.; Cioffi, N. Sn-deficiency in the Electrodeposited Ternary CuxSnySz Thin Films by ECALE. Sol. Energy Mater. Sol. Cell 2015, 138, 9–16. [Google Scholar] [CrossRef]
- Nakai, I.; Sugitani, Y.; Nagashima, K.; Niwa, Y. X-ray Photoelectron Spectroscopic Study of Copper Minerals. J. Inorg. Nucl. Chem. 1978, 40, 789–791. [Google Scholar] [CrossRef]
- Cabrera-German, D.; García-Valenzuela, J.A.; Martínez-Gil, M.; Suárez-Campos, G.; Montiel-González, Z.; Sotelo-Lerma, M.; Cota-Leal, M. Assessing the chemical state of chemically deposited copper sulfide: A quantitative analysis of the X-ray photoelectron spectra of the amorphous-to-covellite transition phases. Appl. Surf. Sci. 2019, 481, 281–295. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced Analysis of Copper X-ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Tao, J.H.; Chen, L.L.; Cao, H.Y.; Zhang, C.J.; Liu, J.F.; Zhang, Y.B.; Huang, L.; Jiang, J.C.; Yang, P.X.; Chu, J.H. Co-electrodeposited Cu2ZnSnS4 Thin-Film Solar Cells with over 7% Efficiency Fabricated via Fine-tuning of the Zn Content in Absorber Layers. J. Mater. Chem. A 2016, 4, 3798–3805. [Google Scholar] [CrossRef]
- Ge, S.J.; Gao, H.; Hong, R.J.; Li, J.J.; Mai, Y.H.; Lin, X.Z.; Yang, G.W. Improvement of Cu2ZnSn(S,Se)4 Solar Cells by Adding N,N-Dimethylformamide to the Dimethyl Sulfoxide-Based Precursor Ink. ChemSusChem 2019, 12, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, J.; Tylus, W.; Szczygie, B. EIS and XPS Investigations on the Corrosion Mechanism of Ternary Zn-Co-Mo Alloy Coatings in NaCl Solution. Appl. Surf. Sci. 2016, 364, 455–466. [Google Scholar] [CrossRef]
- Powell, C.J. Recommended Auger Parameters for 42 Elemental Solids. J. Electron Spectrosc. 2012, 185, 1–3. [Google Scholar] [CrossRef]
- Deroubaix, G.; Marcus, P. X-ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides. Surf. Interface Anal. 1992, 18, 39–46. [Google Scholar] [CrossRef]
- Langer, D.W.; Vesely, C.J. Electronic Core Levels of Zinc Chalcogenides. Phys. Rev. B 1970, 2, 4885–4892. [Google Scholar] [CrossRef]
- Lin, A.W.C.; Armstrong, N.R.; Kuwana, T. X-ray Photoelectron/Auger Electron Spectroscopic Studies of Tin and Indium Metal Foils and Oxides. Anal. Chem. 1977, 49, 1228–1235. [Google Scholar] [CrossRef]
- Cruz, M.; Morales, J.; Espinos, J.P.; Sanz, J. XRD, XPS and Sn NMR Study of Tin Sulfides Obtained by Using Chemical Vapor Transport Methods. J. Solid State Chem. 2003, 175, 359–365. [Google Scholar] [CrossRef]
- Kövér, L.; Moretti, G.; Kovács, Z.; Sanjinés, R.; Cserny, I.; Margaritondo, G.; Pálinkás, J.; Adachi, H. High Resolution Photoemission and Auger Parameter Studies of Electronic Structure of Tin Oxides. J. Vac. Sci. Technol. A 1995, 13, 1382–1388. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, I.Y.; Surywanshi, M.P.; Ghorpade, U.V.; Lee, D.S.; Kim, J.H. Fabrication of Cu2SnS3 Thin Film Solar Cells using Cu/Sn Layered Metallic Precursors Prepared by a Sputtering Process. Sol. Energy. 2017, 145, 27–32. [Google Scholar] [CrossRef]
- Fontané, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodriguez, A.; Morante, J.R.; Berg, D.M.; Dale, P.J.; Siebentritt, S. In-depth Resolved Raman Scattering Analysis for the Identification of Secondary Phases: Characterization of Cu2ZnSnS4 Layers for Solar Cell Applications. Appl. Phys. Lett. 2011, 98, 181905. [Google Scholar] [CrossRef]
- Ramanathan, K.; Contreras, M.A.; Perkins, C.L.; Asher, S.; Hasoon, F.S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; et al. Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-Film Solar Cells. Prog. Photovolt. 2003, 11, 225–230. [Google Scholar] [CrossRef]
- Abous-Ras, D.; Kirchartz, T.; Rau, U. Advanced Characterization Techniques for Thin Film Solar Cells, 1st ed.; WILEY-VCH Verlag GmbH&Co. KGaA: Weinheim, Germany, 2011; p. 6. [Google Scholar]
- Christians, J.A.; Manser, J.S.; Kamat, P.V. Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. J. Phys. Chem. Lett. 2015, 6, 852–857. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, H.; Fu, E.; Wang, Y. In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells. Nanomaterials 2019, 9, 855. https://doi.org/10.3390/nano9060855
Zhang X, Wu H, Fu E, Wang Y. In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells. Nanomaterials. 2019; 9(6):855. https://doi.org/10.3390/nano9060855
Chicago/Turabian StyleZhang, Xianfeng, Hongde Wu, Engang Fu, and Yuehui Wang. 2019. "In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells" Nanomaterials 9, no. 6: 855. https://doi.org/10.3390/nano9060855
APA StyleZhang, X., Wu, H., Fu, E., & Wang, Y. (2019). In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells. Nanomaterials, 9(6), 855. https://doi.org/10.3390/nano9060855