Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of ZrO2 and Zn–ZrO2 NPs
2.3. Adsorption of Probe Molecules
2.4. Characterization of Materials
3. Results and Discussion
3.1. Properties of ZrO2 and Zn–ZrO2
3.1.1. Characterization by XRD and TEM of the ZrO2 and Zn–ZrO2 NPs
3.1.2. Raman Spectra of ZrO2 and Zn–ZrO2 NPs
3.1.3. XPS Measurements
3.2. Measurement of UV-Vis DRS
3.3. SERS Spectra of 4-MBA Adsorbed on ZrO2 and Zn–ZrO2 NPs
3.4. Enhancement Factor (EF) of Zn–ZrO2 NPs
3.5. CT Mechanism and Direction of CT Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Muehlethaler, C.; Leona, M.; Lombardi, J.R. Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 2015, 88, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Jin, Q.; Yan, N.; Feng, J.; Wang, J.; Tang, X. SERS nanoprobes in biologically Raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice. Adv. Biosyst. 2018, 2, 1800100. [Google Scholar] [CrossRef]
- Mao, Z.; Liu, Z.; Chen, L.; Yang, J.; Zhao, B.; Jung, Y.M.; Wang, X.; Zhao, C. Predictive value of the surface-enhanced resonance Raman scattering-based mtt assay: A rapid and ultrasensitive method for cell viability in situ. Anal. Chem. 2013, 85, 7361–7368. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Z.; Lee, Y.; Wang, X.; Zhao, B.; Jung, Y.M. Quantitative evaluation of proteins with bicinchoninic acid (bca): Resonance Raman and surface-enhanced resonance Raman scattering-based methods. Analyst 2012, 137, 5834–5838. [Google Scholar] [CrossRef] [PubMed]
- Han, X.X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, B.; Lombardi, J.R. ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: Observation of a charge-transfer resonance. Appl. Phys. Lett. 2007, 91, 221106. [Google Scholar] [CrossRef]
- Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 2005, 36, 497–509. [Google Scholar] [CrossRef]
- Islam, S.K.; Tamargo, M.; Moug, R.; Lombardi, J.R. Surface-enhanced Raman scattering on a chemically etched ZnSe surface. J. Phys. Chem. C 2013, 117, 23372–23377. [Google Scholar] [CrossRef]
- Wu, H.; Wang, H.; Li, G. Metal oxide semiconductor sers-active substrates by defect engineering. Analyst 2017, 142, 326–335. [Google Scholar] [CrossRef]
- Huang, Y.F.; Zhang, M.; Zhao, L.B.; Feng, J.M.; Wu, D.Y.; Ren, B.; Tian, Z.Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 2014, 53, 2353–2357. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-W.; Zhang, Y.; Li, J.-F.; Liu, Z.; Ren, B.; Sun, S.-G.; Tian, Z.-Q.; Lian, T. Synthesis of Au@Pd core–shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 2005, 408, 354–359. [Google Scholar] [CrossRef]
- Mogensen, K.B.; Kneipp, K. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of surface screening effects. J. Phys. Chem. C 2014, 118, 28075–28083. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, X.; Yin, D.; Li, X.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Recyclable au-TiO2 nanocomposite sers-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys. PCCP 2017, 19, 11212–11219. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, J.R.; Birke, R.L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130. [Google Scholar] [CrossRef]
- Liu, L.; Yang, H.; Ren, X.; Tang, J.; Li, Y.; Zhang, X.; Cheng, Z. Au–ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced sers for recyclable sers-active substrates. Nanoscale 2015, 7, 5147–5151. [Google Scholar] [CrossRef] [PubMed]
- Navio, J.; Hidalgo, M.; Colon, G.; Botta, S.; Litter, M. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol−gel technique. Langmuir 2001, 17, 202–210. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Mao, X.; Zhu, Q.; Xie, J.; Feng, M.; Jiang, B.; Zhang, L. Investigation of optical, mechanical, and thermal properties of ZrO2-doped Y2O3 transparent ceramics fabricated by HIP. Ceram. Int. 2018, 44, 1362–1369. [Google Scholar] [CrossRef]
- Duan, H.; Unno, M.; Yamada, Y.; Sato, S. Adsorptive interaction between 1,5-pentanediol and mgo-modified ZrO2 catalyst in the vapor-phase dehydration to produce 4-penten-1-ol. Appl. Catal. A Gen. 2017, 546, 96–102. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Kotsedi, L.; Simo, A.; Fuku, X.; Mola, G.T.; Kennedy, J.; Maaza, M. Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye. Appl. Surf. Sci. 2017, 421, 234–239. [Google Scholar] [CrossRef]
- Marti, A. Inert bioceramics (Al2O3, ZrO2) for medical application. Injury 2000, 31, D33–D36. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, Y.; Xi, J.; Qiu, X.; Chen, L. ZrO2-nanoparticle-modified graphite felt: Bifunctional effects on vanadium flow batteries. ACS Appl. Mater. Interfaces 2016, 8, 15369–15378. [Google Scholar] [CrossRef] [PubMed]
- Gionco, C.; Paganini, M.C.; Giamello, E.; Burgess, R.; Di Valentin, C.; Pacchioni, G. Cerium-doped zirconium dioxide, a visible-light-sensitive photoactive material of third generation. J. Phys. Chem. Lett. 2014, 5, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J.R. Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. J. Raman Spectrosc. 2009, 41, 721–726. [Google Scholar]
- Xue, X.; Ruan, W.; Yang, L.; Ji, W.; Xie, Y.; Chen, L.; Song, W.; Zhao, B.; Lombardi, J.R. Surface-enhanced Raman scattering of molecules adsorbed on co-doped ZnO nanoparticles. J. Raman Spectrosc. 2012, 43, 61–64. [Google Scholar] [CrossRef]
- Xue, X.; Ji, W.; Mao, Z.; Li, Z.; Ruan, W.; Zhao, B.; Lombardi, J.R. Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles. Spectrochim. Acta. Part AMol. Biomol. Spectrosc. 2012, 95, 213–217. [Google Scholar] [CrossRef]
- Long, D.; Niu, M.; Tan, L.; Fu, C.; Ren, X.; Xu, K.; Zhong, H.; Wang, J.; Li, L.; Meng, X. Ball-in-ball ZrO2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli responsive chemotherapy of tumor. Nanoscale 2017, 9, 8834–8847. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Z.; Zheng, X.; Qiao, Y.; Guo, J.; Li, C.M. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging. Nanotechnology 2011, 22, 155604. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, J.; Li, X.; Wang, F. Metal oxide nanoparticles from inorganic sources via a simple and general method. Mater. Chem. Phys. 2006, 97, 137–142. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, X.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J.R. Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. J. Phys. Chem. C 2008, 112, 20095–20098. [Google Scholar] [CrossRef]
- Carlone, C. Raman spectrum of zirconia-hafnia mixed crystals. Phys. Rev. B 1992, 45, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Vanderbilt, D. Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 2002, 65, 075105. [Google Scholar] [CrossRef] [Green Version]
- Palma-Goyes, R.E.; Vazquez-Arenas, J.; Ostos, C.; Manzo-Robledo, A.; Romero-Ibarra, I.; Calderón, J.A.; González, I. In search of the active chlorine species on Ti/ZrO2-RuO2-Sb2O3 anodes using dems and xps. Electrochim. Acta 2018, 275, 265–274. [Google Scholar] [CrossRef]
- Guittet, M.J.; Crocombette, J.P.; Gautier-Soyer, M. Bonding and xps chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects. Phys. Rev. B 2001, 63, 125117. [Google Scholar] [CrossRef]
- Xue, X.; Ji, W.; Mao, Z.; Zhao, C.; Zhao, B.; Lombardi, J.R. Simultaneous enhancement of phonons modes with molecular vibrations due to mg doping of a TiO2 substrate. RSC Adv. 2013, 3, 20891–20895. [Google Scholar] [CrossRef]
- Chang, S.-m.; Doong, R.-a. Interband transitions in sol−gel-derived ZrO2 films under different calcination conditions. Chem. Mater. 2007, 19, 4804–4810. [Google Scholar] [CrossRef]
- Jiang, L.; Yin, P.; You, T.; Wang, H.; Lang, X.; Guo, L.; Yang, S. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles. ChemPhysChem 2012, 13, 3932–3936. [Google Scholar] [CrossRef]
- Jiang, L.; You, T.; Yin, P.; Shang, Y.; Zhang, D.; Guo, L.; Yang, S. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 2013, 5, 2784–2789. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, W.; Zhang, J.; Yang, B.; Xu, W.; Zhao, B.; Lombardi, J.R. Direct observation of surface-enhanced Raman scattering in zno nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Z.; Ji, W.; Sui, H.; Cong, Q.; Wang, X.; Zhao, B. Charge-transfer effect on surface-enhanced Raman scattering (SERS) in an ordered Ag NPs/4-mercaptobenzoic acid/TiO2 system. J. Phys. Chem. C 2015, 119, 22439–22444. [Google Scholar] [CrossRef]
- Yang, L.; Qin, X.; Gong, M.; Jiang, X.; Yang, M.; Li, X.; Li, G. Improving surface-enhanced Raman scattering properties of TiO2 nanoparticles by metal co doping. Spectrochim. Acta. Part AMol. Biomol. Spectrosc. 2014, 123, 224–229. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, P.; Mao, Z.; Wang, Z.; Xue, X.; Zhang, Y.; Lv, J.; Shi, X. Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping. Nanomaterials 2019, 9, 983. https://doi.org/10.3390/nano9070983
Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X. Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping. Nanomaterials. 2019; 9(7):983. https://doi.org/10.3390/nano9070983
Chicago/Turabian StyleJi, Peng, Zhu Mao, Zhe Wang, Xiangxin Xue, Yu Zhang, Jiaao Lv, and Xiumin Shi. 2019. "Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping" Nanomaterials 9, no. 7: 983. https://doi.org/10.3390/nano9070983
APA StyleJi, P., Mao, Z., Wang, Z., Xue, X., Zhang, Y., Lv, J., & Shi, X. (2019). Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping. Nanomaterials, 9(7), 983. https://doi.org/10.3390/nano9070983