1.34 µm Q-Switched Nd:YVO4 Laser with a Reflective WS2 Saturable Absorber
Abstract
:1. Introduction
2. Materials and Methods
2.1. WS2 Saturable Absorber Fabrication
2.2. Characterization of WS2 Saturable Absorber
2.3. Laser Cavity
3. Results and Discussion
3.1. Characteristics of WS2 Saturable Absorber
3.2. WS2 Q-Switched Laser
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, L.; Shengzhi, Z.; Guiqiu, L.; Kejian, Y.; Dechun, L.; Tao, L.; Wenchao, Q.; Tianli, F.; Xintian, C.; Xiaodong, X.; et al. Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber. Opt. Soc. Am. 2015, 32, 1001–1006. [Google Scholar]
- Zayhowski, J.J.; Dill, I.C. Diode-pumped passively Q-switched picosecond microchip lasers. Opt. Lett. 1994, 19, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, S.; Wang, Q.; Zhang, Q.; Sun, L. Optimization of Cr4+-doped saturable-absorber Q-switched lasers. IEEE J. Quantum Electron. 1997, 33, 2286–2294. [Google Scholar] [CrossRef]
- Sandu, O. High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+: YAG lasers. Quantum Electron. 2012, 42, 211–215. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chang, C.C.; Lee, C.Y.; Sung, C.L.; Tung, J.C.; Su, K.W.; Liang, H.C.; Chen, W.D.; Zhang, G. High-peak-power large-angular-momentum beams generated from passively Q-switched geometric modes with astigmatic transformation. Photonics Res. 2017, 5, 561–566. [Google Scholar] [CrossRef]
- Kajava, T.T.; Gaeta, A.L. Q switching of a diode-pumped Nd:YAG laser with GaAs. Opt. Lett. 1996, 21, 1244–1246. [Google Scholar] [CrossRef] [PubMed]
- Spühler, G.J.; Paschotta, R.; Fluck, R.; Braun, B.; Moser, M.; Zhang, G.; Gini, E.; Keller, U. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B 2001, 18, 886. [Google Scholar] [CrossRef]
- Chen, J.; Lin, J.T.; Hung, T.C. Q-switched mode-lock pulses laser range finder. Proc. SPIE Int. Soc. Optic. Eng. 2005, 5627, 270–277. [Google Scholar]
- Nikkinen, J.; Harkonen, A.; Leino, I.; Guina, M. Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser. IEEE Photonics Technol. Lett. 2017, 29, 1816–1819. [Google Scholar] [CrossRef]
- Popa, D.; Sun, Z.; Hasan, T.; Torrisi, F.; Wang, F.; Ferrari, A.C. Graphene q-switched, tunable fiber laser. Appl. Phys. Lett. 2011, 98, 435. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; He, J.; Hao, X.; Yang, Y.; Wu, Y.; Liu, S.; Zhang, B. Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers. Opt. Lett. 2012, 37, 2652–2654. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, H.; Tan, Y.; Tan, Y.; de Aldana, J.R.V.; Chen, F. Passively q-switched waveguide lasers based on two-dimensional transition metal diselenide. Opt. Express 2016, 24, 10385–10390. [Google Scholar] [CrossRef]
- Lin, M.; Peng, Q.; Hou, W.; Fan, X.; Liu, J. 1.3 lm Q-switched solid-state laser based on few-layer ReS2 saturable absorber. Optic. Laser Technol. 2019, 109, 90–93. [Google Scholar] [CrossRef]
- Ismail, E.I.; Kadir, A.; Latiff, A.A.; Ahmad, H.; Harun, S.W. Q-switched erbium-doped fiber laser operating at 1502nm with molybdenum disulfide saturable absorber. J. Nonlinear Optic. Phys. Mater. 2016, 25, 1650025. [Google Scholar] [CrossRef]
- Wang, K.; Yang, K.; Zhang, X.; Zhao, S.; Luan, C.; Liu, C.; Wang, J.; Xu, X.; Xu, J. Passively Q-switched laser at 1.3 μm with few-layered MoS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 1077–1260. [Google Scholar]
- Chu, Z.; Liu, J.; Guo, Z.; Zhang, H. 2 μm passively q-switched laser based on black phosphorus. Opt. Mater. Express 2016, 6, 2374. [Google Scholar] [CrossRef]
- Fauziah, C.M.; Rosol, A.H.A.; Latiff, A.A.; Harun, S.W. The generation of q-switched erbium-doped fiber laser using black phosphorus saturable absorber with 8% modulation depth. IOP Conf. Ser. Mater. Sci. Eng. 2017, 210, 012043. [Google Scholar] [CrossRef]
- Jiang, W.; Yonggang, W.; Taijin, W.; Guangying, L.; Rui, L.; Guanghua, C.; Jing, B. Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials 2019, 9, 640. [Google Scholar] [Green Version]
- Jhon, Y.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef]
- Li, L.; Lv, R.; Wang, J.; Chen, Z.; Wang, H.; Liu, S.; Ren, W.; Liu, W.; Wang, Y. Optical Nonlinearity of ZrS2 and Applications in Fiber Laser. Nanomaterials 2019, 9, 315. [Google Scholar] [CrossRef]
- Tuo, M.; Xu, C.; Mu, H.; Bao, X.; Wang, Y.; Xiao, S.; Ma, W.; Li, L.; Tang, D.; Zhang, H.; et al. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 2018, 5, 1808–1816. [Google Scholar] [CrossRef]
- Wang, F. Two-dimensional materials for ultrafast lasers. Chin. Phys. B 2017, 26, 034202. [Google Scholar] [CrossRef]
- Li, D.; Xue, H.; Qi, M.; Wang, Y.; Aksimsek, S.; Chekurov, N.; Kim, C.; Li, C.; Riikonen, J.; Ye, F.; et al. Graphene actively q-switched lasers. 2D Materials 2017, 4, 025095. [Google Scholar] [CrossRef]
- He, J.; Tao, L.; Zhang, H.; Zhou, B.; Li, J. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593. [Google Scholar] [CrossRef]
- Yu, S.; Wu, X.; Wang, Y.; Guo, X.; Tong, L. 2d materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Q.; Qiu, J. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef]
- Gutiérrez, H.R.; Perea-López, N.; Elías, A.L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V.H.; Terrones, H.; Terrones, M. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13, 3447–3454. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.; Wang, J.; Li, X.; Chen, J. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 2015, 23, 11453. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Y.; Yang, K.; Zhao, J.; Zhao, S.; Li, G.; Li, D.; Li, T.; Qiao, W. 1.36 W Passively Q-Switched YVO4/Nd:YVO4 Laser With a WS2 Saturable Absorber. IEEE Photonics Technol. Lett. 2017, 29, 470–473. [Google Scholar] [CrossRef]
- Tang, C.Y.; Cheng, P.K.; Tao, L.; Long, H.; Tsang, Y.H. Passively Q-switched Nd:YVO4 laser using WS2 saturable absorber fabricated by radio frequency magnetron sputtering deposition. J. Lightwave Technol. 2017, 35, 4120–4124. [Google Scholar] [CrossRef]
- Wenjun, L.; Lihui, P.; Hainian, H.; Zhongwei, S.; Ming, L.; Hao, T.; Zhiyi, W. Dark solitons in WS2 erbium-doped fiber lasers. Photonics Res. 2016, 4, 111–114. [Google Scholar]
- Zhang, S.; Guo, L.; Fan, M.; Lou, F.; Zhao, S. Passively Q-Switched Er:LuAG Laser at 1.65 μm Using MoS2 and WS2 Saturable Absorbers. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar]
- Chen, W.; Luo, H.; Zhang, H.; Li, C.; Xie, J.; Li, J.; Liu, Y. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber Laser Phys. Lett. 2016, 13, 105108. [Google Scholar]
- Taijin, W.; Jiang, W.; Yonggang, W.; Xiguang, Y.; Sicong, L.; Ruidong, L.; Zhendong, C. High-power passively Q-switched Nd:GdVO4 laser with a reflective graphene oxide saturable absorber. Chin. Opt. Lett. 2019, 2, 020009. [Google Scholar] [CrossRef]
- Gang, Z.; Yonggang, W.; Zhiyong, J.; Dailin, L.; Zhendong, C. Tungsten disulfide saturable absorber for passively Q-Switched YVO4/Nd:YVO4/YVO4 laser at 1342.2 nm. Opt. Mater. 2019, 92, 95–99. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, Y.; Wang, J.; Bai, J.; Li, G.; Lou, R.; Cheng, G. 1.34 µm Q-Switched Nd:YVO4 Laser with a Reflective WS2 Saturable Absorber. Nanomaterials 2019, 9, 1200. https://doi.org/10.3390/nano9091200
Wang T, Wang Y, Wang J, Bai J, Li G, Lou R, Cheng G. 1.34 µm Q-Switched Nd:YVO4 Laser with a Reflective WS2 Saturable Absorber. Nanomaterials. 2019; 9(9):1200. https://doi.org/10.3390/nano9091200
Chicago/Turabian StyleWang, Taijin, Yonggang Wang, Jiang Wang, Jing Bai, Guangying Li, Rui Lou, and Guanghua Cheng. 2019. "1.34 µm Q-Switched Nd:YVO4 Laser with a Reflective WS2 Saturable Absorber" Nanomaterials 9, no. 9: 1200. https://doi.org/10.3390/nano9091200
APA StyleWang, T., Wang, Y., Wang, J., Bai, J., Li, G., Lou, R., & Cheng, G. (2019). 1.34 µm Q-Switched Nd:YVO4 Laser with a Reflective WS2 Saturable Absorber. Nanomaterials, 9(9), 1200. https://doi.org/10.3390/nano9091200