Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Modification, Decay and EMC
3.2. Nanostructure of Chemically Modified Wood Fibers
3.3. Effects of Brown Rot Exposure on Nanostructure of Chemically Modified Wood Fibers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feist, W.C. Outdoor Wood Weathering and Protection. In Archaelogical Wood: Properties, Chemistry and Preservation. Advances in Chemistry Series 225, Proceedings of 196th Meeting of the American Chemical Society, Los Angeles, CA, USA, 25–28 September 1988; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washingotn, DC, USA, 1989. [Google Scholar]
- Rowell, R.M.; Rebecca, E.; Nilsson, T. Chapter 8 Wood Durability and Stability Without Toxicity. In Sustainable Development in the Forest Products Industry; Universidade Fernando Pessoa: Porto, Portugal, 2010; pp. 181–208. [Google Scholar]
- Ringman, R.; Beck, G.; Pilgård, A. The Importance of Moisture for Brown Rot Degradation of Modified Wood: A Critical Discussion. Forests 2019, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Ringman, R.; Pilgard, A.; Brischke, C.; Richter, K. Mode of action of brown rot decay resistance in modified wood: A review. Holzforschung 2014, 68, 239–246. [Google Scholar] [CrossRef]
- Thybring, E.E.; Kymäläinen, M.; Rautkari, L. Moisture in modified wood and its relevance for fungal decay. IForest 2018, 11, 418–422. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Nishiyama, Y.; Pingali, S.V.; O’Neill, H.M.; Zhang, Q.; Berglund, L.A. Small Angle Neutron Scattering Shows Nanoscale PMMA Distribution in Transparent Wood Biocomposites. Nano Lett. 2021, 21, 2883–2890. [Google Scholar] [CrossRef]
- Plaza, N.Z.; Jakes, J.E.; Frihart, C.R.; Hunt, C.G.; Yelle, D.J.; Lorenz, L.F.; Heller, W.T.; Pingali, S.V.; Stone, D.S. Small-angle neutron scattering as a new tool to evaluate moisture-induced swelling in the nanostructure of chemically modified wood cell walls. For. Prod. J. 2019, 68, 349–352. [Google Scholar]
- Plaza, N.Z. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions; University of Wisconsin-Madison: Madison, WI, USA, 2017. [Google Scholar]
- Plaza, N.Z.; Ibach, R.E.; Pingali, S.V. Probing the Nanostructural Mechanisms Behind Decay Resistance of Chemically Modified Wood Using Small Angle Neutron Scattering. In Proceedings of the 2021 Forest Products Society International Conference, Madison, WI, USA, 15–17 June 2021; pp. 159–163. [Google Scholar]
- Ibach, R.E.; Plaza, N.Z.; Pingali, S.V. Small Angle Neutron Scattering Reveals Wood Nanostructural Features in Decay Resistant Chemically Modified Wood. Front. For. Glob. Chang. 2022, 4, 1–11. [Google Scholar] [CrossRef]
- Plaza, N.Z. On the Experimental Assessment of the Molecular-Scale Interactions between Wood and Water. Forests 2019, 10, 616. [Google Scholar] [CrossRef] [Green Version]
- Plaza, N.Z.; Pingali, S.V.; Qian, S.; Heller, W.T.; Jakes, J.E. Informing the improvement of forest products durability using small angle neutron scattering. Cellulose 2016, 23, 1593–1607. [Google Scholar] [CrossRef]
- Penttilä, P.A.; Altgen, M.; Carl, N.; van der Linden, P.; Morfin, I.; Österberg, M.; Schweins, R.; Rautkari, L. Moisture-related changes in the nanostructure of woods studied with x-ray and neutron scattering. Cellulose 2020, 27, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Penttilä, P.A.; Altgen, M.; Awais, M.; Österberg, M.; Rautkari, L.; Schweins, R. Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scattering. Sci. Rep. 2020, 10, 20844. [Google Scholar] [CrossRef] [PubMed]
- Rowell, R.M. Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 2006, 1, 29–33. [Google Scholar] [CrossRef]
- Ibach, R.E.; Rowell, R.M.; Lee, B.-G. Decay Protection Based on Moisture Exclusion Resulting From Chemical Modification of Wood. In Proceedings of the 5th Pacific Rim Bio-Based Composites Symposium, Canberra, Australia, 10–13 December 2000; Evans, P.D., Ed.; Department of Forestry, The Australian National University: Canberra, Australia, 2000; pp. 197–204. [Google Scholar]
- Pingali, S.V.; Urban, V.S.; Heller, W.T.; McGaughey, J.; O’Neill, H.; Foston, M.; Myles, D.A.; Ragauskas, A.; Evans, B.R. Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass. Biomacromolecules 2010, 11, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Langan, P.; O’Neill, H.; Pingali, S.V.; Harton, S. Structural coarsening of aspen wood by hydrothermal pretreatment monitored by small- and wide-angle scattering of X-rays and neutrons on oriented specimens. Cellulose 2014, 21, 1015–1024. [Google Scholar] [CrossRef]
- Rowell, R.M.; Gutzmer, D.I. Chemical Modification of Wood: Reactions of Alkylene Oxides With Southern Yellow Pine. Wood Sci. 1975, 7, 240–246. [Google Scholar]
- Rowell, R.M.; Dale Ellis, W. Reaction of Epoxides with Wood; Research Paper FPL 451; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1984. [Google Scholar]
- AWPA E11-97; Standard Method of Determining the Leachability of Wood Preservatives. AWPA: Hoover, AL, USA, 1999.
- ASTM D1413; Standard Method of Testing Wood Preservatives by Laboratory Soil-Block Cultures. ASTM International: West Conshohocken, PA, USA, 1999.
- Goodell, B.; Zhu, Y.; Kim, S.; Kafle, K.; Eastwood, D.; Daniel, G.; Jellison, J.; Yoshida, M.; Groom, L.; Pingali, S.V.; et al. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol. Biofuels 2017, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28, 717–728. [Google Scholar] [CrossRef]
- Beaucage, G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 1996, 29, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Ilavsky, J.; Jemian, P.R. Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009, 42, 347–353. [Google Scholar] [CrossRef]
- ASTM D2017-05; Standard Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods. ASTM International: West Conshohocken, PA, USA, 2005.
- Donaldson, L. Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci. Technol. 2007, 41, 443–460. [Google Scholar] [CrossRef]
- Lyczakowski, J.J.; Bourdon, M.; Terrett, O.M.; Helariutta, Y.; Wightman, R.; Dupree, P. Structural imaging of native cryo-preserved secondary cell walls reveals presence of macrofibrils composed of cellulose, lignin and xylan. Biorxiv 2019, 10, 648360. [Google Scholar]
- Adobes-Vidal, M.; Frey, M.; Keplinger, T. Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure. J. Struct. Biol. 2020, 211, 107532. [Google Scholar] [CrossRef] [PubMed]
- Toba, K.; Yamamoto, H.; Yoshida, M. Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 2013, 20, 633–643. [Google Scholar] [CrossRef]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 2000, 46, 431–436. [Google Scholar] [CrossRef]
- Kuribayashi, T.; Ogawa, Y.; Rochas, C.; Matsumoto, Y.; Heux, L.; Nishiyama, Y. Hydrothermal Transformation of Wood Cellulose Crystals into Pseudo-Orthorhombic Structure by Cocrystallization. ACS Macro Lett. 2016, 5, 730–734. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Meng, D.; Li, X.; Goodell, B. Non-enzymatic modification of the crystalline structure and chemistry of Masson pine in brown-rot decay. Carbohydr. Polym. 2022, 286, 119242. [Google Scholar] [CrossRef]
- Zhu, Y.; Plaza, N.; Kojima, Y.; Yoshida, M.; Zhang, J.; Jellison, J.; Pingali, S.V.; O’Neill, H.; Goodell, B. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall. Front. Microbiol. 2020, 11, 1389. [Google Scholar] [CrossRef]
- Rowell, R.; Simonson, R.; Hess, S.; Plackett, D.; Cronshaw, D.; Dunningham, E. Acetyl Distribution in Acetylated Whole Wood and Reactivity of Isolated Wood Cell-Wall Components To Acetic Anhydride. Wood Fiber Sci. 1994, 26, 11–18. [Google Scholar]
- Terrett, O.; Lyczakowski, J.; Yu, L.; Dupree, P.; Iuga, D.; Franks, W.; Brown, S.; Dupree, R. Molecular architecture of softwood revealed by solid-state NMR. Nat. Commun. 2019, 10, 4978. [Google Scholar] [CrossRef] [Green Version]
- Salmén, L. On the organization of hemicelluloses in the wood cell wall. Cellulose 2022, 29, 1349–1355. [Google Scholar] [CrossRef]
- Thomas, L.H.; Martel, A.; Grillo, I.; Jarvis, M.C. Hemicellulose binding and the spacing of cellulose microfibrils in spruce wood. Cellulose 2020, 27, 4249–4254. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Kirui, A.; Dickwella Widanage, M.C.; Mentink-Vigier, F.; Cosgrove, D.J.; Wang, T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 2019, 10, 347. [Google Scholar] [CrossRef] [PubMed]
- Felhofer, M.; Bock, P.; Singh, A.; Prats-Mateu, B.; Zirbs, R.; Gierlinger, N. Wood Deformation Leads to Rearrangement of Molecules at the Nanoscale. Nano Lett. 2020, 20, 2647–2653. [Google Scholar] [CrossRef] [Green Version]
- Arantes, V.; Goodell, B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. Deterior. Prot. Sustain. Biomater. 2014, 1158, 3–21. [Google Scholar]
- Pingali, S.V.; Urban, V.S.; Heller, W.T.; McGaughey, J.; O’Neill, H.; Foston, M.B.; Li, H.; Wyman, C.E.; Myles, D.A.; Langan, P.; et al. Understanding Multiscale Structural Changes during Dilute Acid Pretreatment of Switchgrass and Poplar. ACS Sustain. Chem. Eng. 2017, 5, 426–435. [Google Scholar] [CrossRef]
- Petridis, L.; Pingali, S.; Urban, V.; Heller, W.; O’Neill, H.; Foston, M.; Ragauskas, A.; Smith, J. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys. Rev. E 2011, 83, 4–7. [Google Scholar] [CrossRef]
- Yelle, D.J.; Ralph, J.; Lu, F.; Hammel, K.E. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 2008, 10, 1844–1849. [Google Scholar] [CrossRef]
- Yelle, D.J.; Wei, D.; Ralph, J.; Hammel, K.E. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ. Microbiol. 2011, 13, 1091–1100. [Google Scholar] [CrossRef]
- Hunt, C.G.; Zelinka, S.L.; Frihart, C.R.; Lorenz, L.; Yelle, D.; Gleber, S.C.; Vogt, S.; Jakes, J.E. Acetylation increases relative humidity threshold for ion transport in wood cell walls—A means to understanding decay resistance. Int. Biodeterior. Biodegrad. 2018, 133, 230–237. [Google Scholar] [CrossRef]
- Jakes, J.E. Mechanism for Diffusion through Secondary Cell Walls in Lignocellulosic Biomass. J. Phys. Chem. B 2019, 123, 4333–4339. [Google Scholar] [CrossRef] [PubMed]
- Jakes, J.E.; Hunt, C.G.; Zelinka, S.L.; Ciesielski, P.N.; Plaza, N.Z. Effects of moisture on diffusion in unmodified wood cell walls: A phenomenological polymer science approach. Forests 2019, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Jakes, J.E.; Plaza, N.; Stone, D.S.; Hunt, C.G.; Glass, S.V.; Zelinka, S.L. Mechanism of Transport Through Wood Cell Wall Polymers. J. For. Prod. Ind. 2013, 2, 10–13. [Google Scholar]
Butylene Oxide (5% TEA, 150 psi) | |||
---|---|---|---|
Reaction Temperature | Reaction Time (min/h) | Unleached (WPG) | Water Leached (WPG) |
110 °C | 0 min | 0 | −3.3 |
110 °C | 20 min | 6.5 | 6.1 |
110 °C | 1 h | 11.8 | 11.1 |
110 °C | 2 h | 17.9 | 17.0 |
110 °C | 4 h | 20.7 | 19.6 |
120 °C | 6 h | 20.9 | 19.5 |
Propylene Oxide (5% TEA, 150 psi) | |||
---|---|---|---|
Reaction Temperature | Reaction Time (min/h) | Unleached (WPG) | Water Leached (WPG) |
110 °C | 0 | 0 | −2.1 |
110 °C | 5 min | 7.5 | 7.0 |
110 °C | 15 min | 15.3 | 14.2 |
110 °C | 30 min | 21.0 | 19.6 |
110 °C | 60 min | 24.9 | 23.6 |
120 °C | 60 min | 25.7 | 24.1 |
Acetic Anhydride | |||||
---|---|---|---|---|---|
Reaction Time | Unleached | Water Leached | |||
(min/h) | (WPG) | Acetyl (%) | (WPG) | Acetyl (%) | |
Fiber | 0 | 0 | 1.0 | −3.9 | 1.0 |
1 min dip | 22 min | 4.5 | 7.5 | 4.1 | 6.4 |
5 min drain | 40 min | 8.8 | 11.9 | 8.6 | 12.0 |
120–125 °C | 2 h | 13.4 | 15.3 | 12.8 | 15.5 |
oil bath | 4 h | 14.8 | 16.3 | 14.3 | 17.0 |
Sample Description | Modification Level WPG (%) | Decay Level WL (%) |
---|---|---|
Unmodified Wood Fiber (UWF) | 0 | - |
UWF exposed to brown rot exposure (UWF-BRE) | 0 | 54.9 |
Wood fiber lightly modified with butylene oxide (BOF7) | 6.5 | - |
Wood fiber modified with butylene oxide (BOF21) | 20.9 | - |
BOF2 exposed to brown rot (BOF21-BRE) | 20.9 | −0.6 |
Wood fiber lightly modified with propylene oxide (POF7) | 7.5 | - |
Wood fiber modified with propylene oxide (POF21) | 21.0 | - |
POF7 exposed to brown rot (POF7-BRE) | 7.5 | 43.5 |
POF21 exposed to brown rot (POF21-BRE) | 21.0 | 1.7 |
Acetylated wood fiber (AF15) | 14.8 | - |
AF exposed to brown rot (AF15-BRE) | 14.8 | 0.4 |
Sample | Low-q q < 0.01 Å−1 | Mid-q 0.01 Å−1 < q < 0.08 Å−1 | High-q q > 0.08 Å−1 | |
---|---|---|---|---|
P1 | P2 | Rg (Å) | Rg (Å) | |
UWF | 4 | 1.01 (0.02) | - | 11.5 (1.3) |
BOF7 | 4 | 0.95 (0.06) | - | 11.6 (1.4) |
BOF21 | 4 | 1.5 (0.06) | - | 11.4 (1) |
POF7 | 3.7 (0.02) | 2.1 (0.3) | 48.3 (2.9) | 9 (4.1) |
POF21 | 4 | 2.9 (0.4) | 52.2 (2.6) | 11.9 (2) |
AF15 | 4 | 1.8 (0.7) | 65.4 (4.6) | 13.6 (2.4) |
Sample | Low-q q < 0.01 Å−1 | Mid-q 0.01 Å−1 < q < 0.08 Å−1 | High-q q > 0.08 Å−1 | |
---|---|---|---|---|
P1 | P2 | Rg (Å) | Rg (Å) | |
UWF-BRE | 4 | 0.95 (0.02) | - | 13.5 (0.8) |
BOF21-BRE | 4 (0.07) | 3.36 (0.4) | 50.4 (1.5) | 11.8 (1.3) |
POF7-BRE | 4 (0.05) | 2.8 (0.1) | 55.8 (2.2) | 10.3 (3) |
POF21-BRE | 4 | 2.2 (0.1) | 50.5 (3.5) | 15.4 (1.6) |
AF15-BRE | 4 | 3 (0.4) | 54.9 (3.4) | 11 (0.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, N.Z.; Pingali, S.V.; Ibach, R.E. Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers. Fibers 2022, 10, 40. https://doi.org/10.3390/fib10050040
Plaza NZ, Pingali SV, Ibach RE. Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers. Fibers. 2022; 10(5):40. https://doi.org/10.3390/fib10050040
Chicago/Turabian StylePlaza, Nayomi Z., Sai Venkatesh Pingali, and Rebecca E. Ibach. 2022. "Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers" Fibers 10, no. 5: 40. https://doi.org/10.3390/fib10050040
APA StylePlaza, N. Z., Pingali, S. V., & Ibach, R. E. (2022). Nanostructural Changes Correlated to Decay Resistance of Chemically Modified Wood Fibers. Fibers, 10(5), 40. https://doi.org/10.3390/fib10050040