Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Fiber Sensors
2.2. Schemes and Functional Elements for Mid-IR FEWS Analysis
3. Results and Discussion
3.1. Testing the First Type of the Sensor Design
3.2. Testing the Second Type of Sensor Design
3.3. Testing the Third Type of the Sensor Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- France, P.W.; Carter, S.F.; Moore, M.W.; Williams, J.R.; Day, C.R. Properties of Fluorozirconate Fibres for Applications in the 0.5 to 4.5 µm Region. In Infrared Optical Materials and Fibers V; SPIE: Cambridge, MA, USA, 1987; pp. 56–61. [Google Scholar] [CrossRef]
- Simhony, S.; Kosower, E.M.; Katzir, A. Fourier transform infrared spectra of aqueous protein mixtures using a novel attenuated total internal reflectance cell with infrared fibers. Biochem. Biophys. Res. Commun. 1987, 142, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Compton, D.A.C.; Hill, S.L.; Wright, N.A.; Druy, M.A.; Piche, J.; Stevenson, W.A.; Vidrine, D.W. In Situ FT-IR Analysis of a Composite Curing Reaction Using a Mid-Infrared Transmitting Optical Fiber. Appl. Spectrosc. 1988, 42, 972–979. [Google Scholar] [CrossRef]
- Bogomolov, A.; Heßling, M.; Wenzel, U.; Princz, S.; Hellmuth, T.; Bernal, M.; Sakharova, T.; Usenov, I.; Artyushenko, V.; Meyer, H. Development and testing of mid-infrared sensors for in-line process monitoring in biotechnology. Sens. Actuators B Chem. 2015, 221, 1601–1610. [Google Scholar] [CrossRef]
- Bogomolov, A.; Ageev, V.; Zabarylo, U.; Usenov, I.; Schulte, F.; Kirsanov, D.; Belikova, V.; Minet, O.; Feliksberger, E.; Meshkovsky, I.; et al. LED-based near infrared sensor for cancer diagnostics. In Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics; SPIE: Cambridge, MA, USA, 2016; p. 971510. [Google Scholar] [CrossRef]
- Artyushenko, V.; Bocharnikov, A.; Sakharova, T.; Usenov, I. Mid-infrared Fiber Optics for 1–18 µm Range: IR-fibers and waveguides for laser power delivery and spectral sensing. Opt. Photon. 2014, 4, 35–39. [Google Scholar] [CrossRef]
- Hocdé, S.; Bousard-Pledel, C.; Fonteneau, G.; Lucas, J. Chalcogen based glasses for IR fiber chemical sensor. Solid States Sci. 2001, 3, 279–284. [Google Scholar] [CrossRef]
- Lucas, P.; Wilhelm, A.A.; Videa, M.; Boussard-Plédel, C.; Bureau, B. Chemical stability of chalcogenide infrared glass fibers. Corrosion Sci. 2008, 7, 2047–2052. [Google Scholar] [CrossRef]
- Boussard-Pledel, C. Chalcogenide waveguides for infrared sensing. In Chalcogenide Glasses: Preparation, Properties and Applications; Adam, J.-L., Zhang, X., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Oxford Cambridge Philadelphia New Delhi: Oxford, UK, 2014; Volume 44, pp. 381–410. [Google Scholar] [CrossRef]
- Eytan, O.; Sela, B.-A.; Katzir, A. Fiber-optic evanescent-wave spectroscopy and neural networks: Application to chemical blood analysis. Appl. Opt. 2000, 39, 3357–3360. [Google Scholar] [CrossRef] [PubMed]
- Shiryaev, V.; Churbanov, M. Preparation of high-purity chalcogenide glasses. In Chalcogenide Glasses: Preparation, Properties and Application; Adam, J.-L., Zhang, X., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Oxford Cambridge Philadelphia New Delhi: Oxford, UK, 2014; Volume 44, pp. 3–35. [Google Scholar] [CrossRef]
- Cui, S.; Boussard-Plédel, C.; Lucas, J.; Bureau, B. Te-based glass fiber for far-infrared biochemical sensing up to 16 μm. Opt. Express 2014, 22, 21253–21262. [Google Scholar] [CrossRef]
- Druy, M.A.; Elandjian, L.; Stevenson, W.A. Composite Cure Monitoring With Infrared Transmitting Optical Fibers. In Optic Smart Structures and Skins; SPIE: Cambridge, MA, USA, 1989. [Google Scholar] [CrossRef]
- Heo, J.; Rodrigues, M.; Saggese, S.J.; Sigel, G.H., Jr. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. Appl. Opt. 1991, 30, 3944–3951. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Kung, F.H.; Pureza, P.C.; Nguyen, V.Q.; Miklos, R.E.; Aggarwal, I.D. Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers. Appl. Opt. 1994, 33, 6315–6322. [Google Scholar] [CrossRef] [Green Version]
- Blanchetière, C.; LeFoulgoc, K.; Ma, H.L.; Zhang, X.H.; Lucas, J. Tellurium Halide Glass Fibers: Preparation and Applications. J. Non-Cryst. Solids 1995, 184, 200–203. [Google Scholar] [CrossRef]
- Katz, M.; Katzir, A.; Schnitzer, I.; Bornstein, A. Quantitative evaluation of chalcogenide glass fiber evanescent wave spectroscopy. Appl. Opt. 1994, 33, 5888–5894. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Jha, A. Engineering of a Ge–Te–Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products. Sens. Actuators B Chem. 2015, 206, 159–169. [Google Scholar] [CrossRef]
- Raichlin, Y.; Katzir, A. Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared. Appl. Spectrosc. 2008, 62, 55A–72A. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Kung, F.H.; Busse, L.E.; Pureza, P.C.; Aggarwal, I.D. Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals Using Chalcogenide Glass Fibers. J. Am. Cer. Soc. 1995, 78, 2198–2202. [Google Scholar] [CrossRef]
- Rigas, B.; Wong, P.T.T. Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues. Cancer Res. 1992, 52, 84–88. [Google Scholar]
- Seddon, A.B. A prospective for New Mid-Infrared Medial Endoscopy Using Chalcogenide Glasses. Int. J. Appl. Glass Sci. 2011, 2, 177–191. [Google Scholar] [CrossRef]
- Romanova, E.; Korsakova, S.; Komanec, M.; Nemecek, T.; Velmuzhov, A.; Sukhanov, M.; Shiryaev, V. Multimode chalcogenide fibers for evanescent wave sensing in the mid-IR, Multimode chalcogenide fibers for evanescent wave sensing in the mid-IR. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 289–295. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Shiryaev, V.S.; Sukhanov, M.V.; Kotereva, T.V.; Churbanov, M.F.; Zernova, N.S.; Plekhovich, A.D. Fiber sensor on the base of Ge26As17Se25Te32 for FEWS analysis. Opt. Mater. 2018, 75, 525–532. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Sukhanov, M.V.; Kotereva, T.V.; Zernova, N.S.; Shiryaev, V.S.; Karaksina, E.V.; Stepanov, B.S.; Churbanov, M.F. Optical fibers based on special pure Ge20Se80 and Ge26As17Se25Te32 glasses for FEWS. J. Non-Crysl. Solids 2019, 517, 70–75. [Google Scholar] [CrossRef]
- Romanova, E.A.; Korsakova, S.V.; Rozhnev, A.G.; Velmuzhov, A.P.; Kotereva, T.V.; Sukhanov, M.V.; Shiryaev, V.S. Chalcogenide fiber loop probe for the mid-IR spectroscopy of oil products. Opt. Express 2020, 28, 5267–5272. [Google Scholar] [CrossRef] [PubMed]
- Le Coq, D.; Michel, K.; Fonteneau, G.; Hocde, S.; Boussard-Pledel, C.; Lucas, J. Infrared chalcogen glasses: Chemical polishing and fibre remote spectroscopy. Int. J. Inorg. Mat. 2001, 3, 233–239. [Google Scholar] [CrossRef]
- Wang, M.; Yang, F.; Dai, S.; Cao, Z.; Su, J.; Ding, S.; Zhang, P. Effect of the Geometries of Ge-Sb-Se Chalcogenide Glass Tapered Fiber on the Sensitivity of Evanescent Wave Sensors. J. Lightwave Technol. 2021, 39, 4828–4836. [Google Scholar] [CrossRef]
- Monro, T.M.; Warren-Smith, S.; Schartner, E.P.; Francois, A.; Heng, S.; Ebendorff-Heidepriem, H.; Afshar, S. Sensing with suspended-core optical fibers. Opt. Fiber Technol. 2010, 16, 343–356. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, K.; Tao, P.; Dai, S.; Wang, X.; Zhang, W.; Xu, T.; Wang, Y.; Lin, T.-J.; Zhang, P. Mid-infrared evanescent wave sensor based on side-polished chalcogenide fiber. Ceram. Int. 2023, 49, 1291–1297. [Google Scholar] [CrossRef]
- Petersen, C.R.; Israelsen, N.M.; Woyessa, G.; Kwarkye, K.; Hansen, R.E.; Markos, C.; Khodabakhsh, A.; Harren, F.J.M.; Rodrigo, P.; Tidemand-Lichtenberg, P.; et al. Supercontinuum based mid-infrared OCT, spectroscopy, and hyperspectral imaging. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 21–25 June 2021; IEEE: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Y.; Peng, X.; Zhang, P.; Wang, X.; Xu, Y. A Review of Mid-Infrared Supercontinuum Generation in Chalcogenide Glass Fibers. Appl. Sci. 2018, 8, 707. [Google Scholar] [CrossRef] [Green Version]
- Karaksina, E.V.; Kotereva, T.V.; Shiryaev, V.S. Luminescence properties of core-clad Pr(3+)-doped Ge-As-Se-Ga(In)-(I) glass fibers. J. Lumin. 2018, 204, 154–156. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Karaksina, E.V.; Kotereva, T.V.; Snopatin, G.E.; Velmuzhov, A.P.; Sukhanov, M.V.; Churbanov, M.F. Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se Glass Fibers for Mid-IR Radiation Sources. J. Non-Cryst. Solids 2020, 537, 120026. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Sukhanov, M.V.; Velmuzhov, A.P.; Karaksina, E.V.; Kotereva, T.V.; Snopatin, G.E.; Denker, B.I.; Galagan, B.I.; Sverchkov, S.E.; Koltashev, V.V.; et al. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm. J. Non-Cryst. Solids 2021, 567, 120939. [Google Scholar] [CrossRef]
- Starecki, F.; Charpentier, F.; Doualan, J.L.; Quetel, L.; Michel, K.; Chahal, R.; Troles, J.; Bureau, B.; Braud, A.; Camy, P.; et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers. Sens. Actuators B-Chem. 2015, 207, 518–525. [Google Scholar] [CrossRef]
- Pele, A.L.; Braud, A.; Doualan, J.L.; Starecki, F.; Nazabal, V.; Chahal, R.; Boussard-Plédel, C.; Bureau, B.; Moncorge, R.; Camy, P. Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: Comparison of simulation and experiment. Opt. Mat. 2016, 61, 37–44. [Google Scholar] [CrossRef]
- Chahal, R.; Starecki, F.; Boussard-Plédel, C.; Doualan, J.-L.; Michel, K.; Brilland, L.; Braud, A.; Camy, P.; Bureau, B.; Nazabal, V. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sens. Actuators B Chem. 2016, 229, 209–216. [Google Scholar] [CrossRef]
- Starecki, F.; Braud, A.; Doualan, J.-L.; Ari, J.; Boussard-Plédel, C.; Michel, K.; Nazabal, V.; Camy, P. All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers. Opt. Lasers Eng. 2019, 122, 328–334. [Google Scholar] [CrossRef]
- Korsakova, S.V.; Romanova, E.A.; Velmuzhov, A.P.; Kotereva, T.V.; Sukhanov, M.V.; Shiryaev, V.S. Analysis of Characteristics of the Sensing Elements for the Fiber-Based Evanescent Wave Spectroscopy in the Mid-IR. Opt. Spectrosc. 2018, 125, 416–424. [Google Scholar] [CrossRef]
- Korsakova, S.V.; Vinogradova, E.A.; Romanova, E.A.; Shiryaev, V.S. Using higher-order modes of chalcogenide optical fibers for the optimization of evanescent wave mid-IR spectroscopy. Tech. Phys. Lett. 2019, 45, 17–21. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Shiryaev, V.S.; Sukhanov, M.V.; Kotereva, T.V.; Stepanov, B.S.; Snopatin, G.E. Mid-IR fiber-optic sensors based on especially pure Ge20Se80 and Ga10Ge15Te73I2 glasses. J. Non-Cryst. Solids 2022, 579, 121374. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Sukhanov, M.V.; Shiryaev, V.S.; Churbanov, M.F.; Kotereva, T.V.; Zernova, N.S.; Fadeeva, D.A. Preparation of Especially Pure Ge-Se Glasses via Germanium Monoselenide for Mid-IR Fiber Optics. Opt. Mater. 2018, 84, 888–892. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Sukhanov, M.V.; Shiryaev, V.S.; Plekhovich, A.D. Preparation of high-purity germanium telluride based glasses with low oxygen impurity content. J. Non-Cryst. Solids 2021, 553, 120480. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Kotereva, T.V.; Velmuzhov, A.P.; Ketkova, L.A.; Snopatin, G.E. Preparation of high-purity Pr(3+) doped Ge-As-Se-In-I glasses for active mid-infrared optics. J. Lumin. 2016, 177, 275–279. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Karaksina, E.V.; Kotereva, T.V.; Churbanov, M.F.; Velmuzhov, A.P.; Sukhanov, M.V.; Ketkova, L.A.; Zernova, N.S.; Plotnichenko, V.G.; Koltashev, V.V. Preparation and investigation of Pr3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics. J. Lumin. 2017, 183, 129–134. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Sukhanov, M.V.; Plotnichenko, V.G.; Plekhovich, A.D.; Shiryaev, V.S.; Churbanov, M.F. Preparation of REE-doped Ge-based chalcogenide glasses with low hydrogen impurity content. J. Non-Cryst. Solids 2019, 525, 119669–119674. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Velmuzhov, A.P.; Otopkova, P.A.; Ketkova, L.A.; Evdokimov, I.I.; Kurganova, A.E.; Plotnichenko, V.G.; Shiryaev, V.S. Rare earth elements as a source of impurities in doped chalcogenide glasses. J. Non-Cryst. Solids 2022, 593, 121793. [Google Scholar] [CrossRef]
- Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Snopatin, G.E.; Sukhanov, M.V.; Sverchkov, S.E.; Velmuzhov, A.P. Continuous Tb-doped fiber laser emitting at ∼5.25 µm. Opt. Laser Technol. 2022, 154, 108355. [Google Scholar] [CrossRef]
- Lucas, P.; Boussard-Pledel, C.; Wilhelm, A.; Danto, S.; Zhang, X.; Houizot, P.; Maurugeon, S.; Conseil, C.; Bureau, B. The Development of Advanced Optical Fibers for Long-Wave Infrared Transmission. Fibers 2013, 1, 110–118. [Google Scholar] [CrossRef]
- Churbanov, M.F.; Denker, B.I.; Galagan, B.I.; Koltashev, V.V.; Plotnichenko, V.G.; Sukhanov, M.V.; Sverchkov, S.E.; Velmuzhov, A.P. Comparison of 4.5–6 μm luminescent and lasing properties of rare earth dopants in chalcogenide glasses. J. Lumin. 2022, 245, 118756. [Google Scholar] [CrossRef]
- Romanova, E.; Korsakova, S. Light waves interaction with an analyte in fiber-optic sensors for mid-IR spectroscopy. Opt. Quantum Electron. 2021, 53, 650. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.G.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, T.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
Material of Flexible Fiber and Tip | Spectral Range, µm | Sensitivity ×103, cm−1/vol.% (947 cm−1) | Signal Linearity (R2 × 102) 1 | Cmin, vol.% 2 |
---|---|---|---|---|
AgX/AgX | 4–15 | 7.0 ± 0.2 | 99.63 | 0.2 |
AgX/Ge20Se80 | 4–12 | 12.0 ± 0.2 | 99.96 | 0.5 |
AgX/Ge28Sb12Se60 | 4–12 | 13.5 ± 0.2 | 99.95 | 0.5 |
AgX/Ge20Se80 with taper | 4–12 | 21.3 ± 0.2 | 99.93 | 0.3 |
AgX/Ga10Ge15Te73I2 | 4–15 | 12.8 ± 0.2 | 99.68 | 0.5 |
As38Se62/Ge20Se80 | 2–12 | 11.2 ± 0.2 | 99.88 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiryaev, V.S.; Velmuzhov, A.P.; Kotereva, T.V.; Tyurina, E.A.; Sukhanov, M.V.; Karaksina, E.V. Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing. Fibers 2023, 11, 54. https://doi.org/10.3390/fib11060054
Shiryaev VS, Velmuzhov AP, Kotereva TV, Tyurina EA, Sukhanov MV, Karaksina EV. Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing. Fibers. 2023; 11(6):54. https://doi.org/10.3390/fib11060054
Chicago/Turabian StyleShiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov, and Ella V. Karaksina. 2023. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing" Fibers 11, no. 6: 54. https://doi.org/10.3390/fib11060054
APA StyleShiryaev, V. S., Velmuzhov, A. P., Kotereva, T. V., Tyurina, E. A., Sukhanov, M. V., & Karaksina, E. V. (2023). Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing. Fibers, 11(6), 54. https://doi.org/10.3390/fib11060054