Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. VOSViewer Analysis
3.1.1. Keywords Analysis
- ✓
- Red Cluster: Polymer Composites and Related Topics. Polymer composites are essential in the study of sustainable materials. This term is closely linked to other terms such as ‘natural fiber’ and ‘life cycle assessment’, indicating that these aspects are often studied together. The term ‘life cycle assessment’ reflects the importance of evaluating the environmental impact of polymer composites from production to disposal.
- ✓
- Green Cluster: Mechanical Properties and Composites. The term ‘mechanical properties’ is significant, showing that the mechanical performance of sustainable FRPs is a major area of research.
- ✓
- Blue Cluster: Concrete and Durability show that the durability of sustainable materials, especially when used in construction (e.g., concrete), is essential. The term ‘concrete’ is linked with sustainability and durability, indicating research interest in sustainable concrete composites.
- ✓
- Yellow Cluster: Recycling and Circular Economy. ‘Recycling’ is a key aspect of sustainability, emphasizing the importance of reusing materials to reduce waste. The term ‘circular economy’ indicates a focus on sustainable practices that promote the reuse and recycling of materials, aligning with broader environmental goals.
Cluster | Keyword | Significant Paper | Article Type | Purpose | Findings |
---|---|---|---|---|---|
Red | sustainability | [12] | Review |
|
|
Natural fibers | [45] | Review |
|
| |
[46] | Review |
|
| ||
[47] | Review |
|
| ||
Polymer composites | [48] | Review |
|
| |
Life cycle assessment (LCA) | [49] | Book section |
|
| |
Green | Mechanical properties | [50] | Review |
|
|
[51] | Review |
|
| ||
Composites | [8] | Review |
|
| |
Natural Fibers | [52] | Review |
|
| |
Biocomposites | [53] | Review |
|
| |
[54] | Review |
|
| ||
Blue | Durability | [55] | Review |
|
|
Concrete | [56] | Review |
|
| |
Yelow | Recycling | [29] | Review |
|
|
[57] | Review |
|
| ||
[58] | Research |
|
| ||
[59] | Review |
|
| ||
Circular economy | [60] | Review |
|
| |
[61] | Review |
|
| ||
[62] | Review |
|
| ||
[63] | Research (conference paper) |
|
|
3.1.2. Co-Authorship Analysis
3.2. Distribution of Articles
3.2.1. Distribution of Articles by Publication Year
3.2.2. Distribution of Articles by Geographical Location
3.2.3. Distribution of Articles by Research Area
3.2.4. Distribution of Articles by Publication Title
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Karim, M.A.; Abdullah, M.Z.; Deifalla, A.F.; Azab, M.; Waqar, A. An Assessment of the Processing Parameters and Application of Fibre-Reinforced Polymers (FRPs) in the Petroleum and Natural Gas Industries: A Review. Results Eng. 2023, 18, 101091. [Google Scholar] [CrossRef]
- Ortiz, J.D.; Khedmatgozar Dolati, S.S.; Malla, P.; Nanni, A.; Mehrabi, A. FRP-Reinforced/Strengthened Concrete: State-of-the-Art Review on Durability and Mechanical Effects. Materials 2023, 16, 1990. [Google Scholar] [CrossRef] [PubMed]
- Van Den Einde, L.; Zhao, L.; Seible, F. Use of FRP Composites in Civil Structural Applications. Constr. Build. Mater. 2003, 17, 389–403. [Google Scholar] [CrossRef]
- Tafsirojjaman, T.; Ur Rahman Dogar, A.; Liu, Y.; Manalo, A.; Thambiratnam, D.P. Performance and Design of Steel Structures Reinforced with FRP Composites: A State-of-the-Art Review. Eng. Fail. Anal. 2022, 138, 106371. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Liu, Y.; Zhang, M.; Li, L.; Ma, L.; Sun, Y.; Wang, W. A Review on Basalt Fiber Composites and Their Applications in Clean Energy Sector and Power Grids. Polymers 2022, 14, 2376. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Structures. Fibers 2022, 10, 27. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A Critical Review of Fused Deposition Modeling 3D Printing Technology in Manufacturing Polylactic Acid Parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Sumithra, G.; Reddy, R.N.; Dheeraj Kumar, G.; Ojha, S.; Jayachandra, G.; Raghavendra, G. Review on Composite Classification, Manufacturing, and Applications. Mater. Today Proc. 2023, 2023, S2214785323025725. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef]
- Bhatt, A.T.; Gohil, P.P.; Chaudhary, V. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012107. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable Fiber-Reinforced Composites: A Review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- Kalla, D.K.; Dhanasekaran, P.S.; Zhang, B.; Asmatulu, R. Sustainability of Fiber Reinforced Composites: Status and Vision for Future. In Proceedings of the Volume 3: Design and Manufacturing; ASMEDC: Denver, CO, USA, 2011; pp. 167–173. [Google Scholar]
- Donnini, J.; Bompadre, F.; Corinaldesi, V. Tensile Behavior of a Glass FRCM System after Different Environmental Exposures. Processes 2020, 8, 1074. [Google Scholar] [CrossRef]
- Elhenawy, Y.; Fouad, Y.; Marouani, H.; Bassyouni, M. Simulation of Glass Fiber Reinforced Polypropylene Nanocomposites for Small Wind Turbine Blades. Processes 2021, 9, 622. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Multi-Objective Optimization of Drilling GFRP Composites Using ANN Enhanced by Particle Swarm Algorithm. Processes 2023, 11, 2418. [Google Scholar] [CrossRef]
- Isik, B.; Gultekin, M.S.; Fidan, I.; Jun, M.B.-G. Optimum Cutting Parameters for Carbon-Fiber-Reinforced Polymer Composites: A Synergistic Approach with Simulated Annealing and Genetic Algorithms in Drilling Processes. Processes 2024, 12, 1477. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Bank, L. Composites for Construction: Structural Design with FRP Materials; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-68126-7. [Google Scholar]
- Hollaway, L.C. A Review of the Present and Future Utilisation of FRP Composites in the Civil Infrastructure with Reference to Their Important In-Service Properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Liu, Y.; Zwingmann, B.; Schlaich, M. Carbon Fiber Reinforced Polymer for Cable Structures—A Review. Polymers 2015, 7, 2078–2099. [Google Scholar] [CrossRef]
- Vara Prasad, V.; Talupula, S. A Review on Reinforcement of Basalt and Aramid (Kevlar 129) Fibers. Mater. Today: Proc. 2018, 5, 5993–5998. [Google Scholar] [CrossRef]
- Hollaway, L.C.; Teng, J.G. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites; Woodhead Publishing: Sawston, UK, 2008; ISBN 978-1-84569-448-7. [Google Scholar]
- Lee, L.S.; Jain, R. The Role of FRP Composites in a Sustainable World. Clean Techn Env. Policy 2009, 11, 247–249. [Google Scholar] [CrossRef]
- Zaman, A.; Gutub, S.A.; Wafa, M.A. A Review on FRP Composites Applications and Durability Concerns in the Construction Sector. J. Reinf. Plast. Compos. 2013, 32, 1966–1988. [Google Scholar] [CrossRef]
- Yağar, A.C.; İNce, C.; Derogar, S. FRP Strengthening of RC Structures: Sustainable, Environmental and Structural Evaluations. J. Sustain. Constr. Mater. Technol. 2022, 7, 358–374. [Google Scholar] [CrossRef]
- Woodhead Publishing Series in Civil and Structural Engineering. In Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer (FRP) Composites; Karbhari, V.M. (Ed.) Woodhead Publishing: Sawston, UK, 2014; pp. xvii–xix. ISBN 978-0-85709-653-1. [Google Scholar]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Halliwell, S. FRPs—The Environmental Agenda. Adv. Struct. Eng. 2010, 13, 783–791. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling Carbon Fibre Reinforced Polymers for Structural Applications: Technology Review and Market Outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L. A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction. Polymers 2014, 6, 1810–1826. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Sobulska, M.; Pietrzak, M.; Zbiciński, I. Application of Life Cycle Assessment to Analysis of Fibre Composite Manufacturing Technologies in Shipyards Industry. Processes 2024, 12, 461. [Google Scholar] [CrossRef]
- Butenegro, J.A.; Bahrami, M.; Martínez, M.Á.; Abenojar, J. Reuse of Carbon Fibers and a Mechanically Recycled CFRP as Rod-like Fillers for New Composites: Optimization and Process Development. Processes 2023, 11, 366. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling Technologies for Thermoset Composite Materials—Current Status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Maurya, A.K.; De Souza, F.M.; Dawsey, T.; Gupta, R.K. Biodegradable Polymers and Composites: Recent Development and Challenges. Polym. Compos. 2023, 45, 2896–2918. [Google Scholar] [CrossRef]
- Matykiewicz, D. Biochar as an Effective Filler of Carbon Fiber Reinforced Bio-Epoxy Composites. Processes 2020, 8, 724. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; Van Heerden, D.-J.; Kuiper, P.; De Wit, H. Recycling of Composite Materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Ferreira, G.M.G.; Cecchin, D.; Azevedo, A.R.G.; Valadão, I.C.R.P.; Costa, K.A.; Silva, T.R.; Ferreira, F.; Amaral, P.I.S.; Huther, C.M.; Sousa, F.A.; et al. Bibliometric Analysis on the Use of Natural Fibers in Construction Materials. Eest. Maaülikooli 2021, 19, 474.7Kb. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Alaloul, W.S.; Liew, M.S.; Baarimah, S.O.; Musarat, M.A.; Bin Mokaizh, A.A. A Bibliometric Review of Research Trends on Kenaf Fiber Reinforced Concrete. Constr. Technol. Archit. 2023, 4, 57–65. [Google Scholar]
- Singh, R. A Bibliometric Analysis and Visualisation of Research Trends in Carbon Reinforced Plastics. Mater. Today Proc. 2023, 81, 899–903. [Google Scholar] [CrossRef]
- Or, I.K.-H.; Lo, C.K.-Y.; Kan, C.-W. A Systematic Literature Network Analysis: Development of Manufacturing, Enhancement and Sustainability of Fiber-Reinforced Polymer Composites (1998–2020) and Future Research Agenda. Fibers Polym 2023, 24, 789–800. [Google Scholar] [CrossRef]
- Sousa, F.D.B.D. A Simplified Bibliometric Mapping and Analysis about Sustainable Polymers. Mater. Today Proc. 2022, 49, 2025–2033. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Navaratnam, S.; Selvaranjan, K.; Jayasooriya, D.; Rajeev, P.; Sanjayan, J. Applications of Natural and Synthetic Fiber Reinforced Polymer in Infrastructure: A Suitability Assessment. J. Build. Eng. 2023, 66, 105835. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Cicala, G. LCA of Fibre-Reinforced Composites. In Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 301–323. ISBN 978-0-08-100169-1. [Google Scholar]
- Diniță, A.; Ripeanu, R.G.; Ilincă, C.N.; Cursaru, D.; Matei, D.; Naim, R.I.; Tănase, M.; Portoacă, A.I. Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis. Polymers 2023, 16, 2. [Google Scholar] [CrossRef]
- Sbahieh, S.; Rabie, M.; Ebead, U.; Al-Ghamdi, S.G. The Mechanical and Environmental Performance of Fiber-Reinforced Polymers in Concrete Structures: Opportunities, Challenges and Future Directions. Buildings 2022, 12, 1417. [Google Scholar] [CrossRef]
- Elanchezhian, C.; Ramnath, B.V.; Ramakrishnan, G.; Rajendrakumar, M.; Naveenkumar, V.; Saravanakumar, M.K. Review on Mechanical Properties of Natural Fiber Composites. Mater. Today Proc. 2018, 5, 1785–1790. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Ahmad, H.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. A Comprehensive Review on Construction Applications and Life Cycle Sustainability of Natural Fiber Biocomposites. Sustainability 2022, 14, 15905. [Google Scholar] [CrossRef]
- Harle, S.M. Durability and Long-Term Performance of Fiber Reinforced Polymer (FRP) Composites: A Review. Structures 2024, 60, 105881. [Google Scholar] [CrossRef]
- Majumdar, K.; Thakur, B.; Majumdar, A. Natural Fiber Reinforced Concrete: Bibliometric and Network Analyses to Delineate the Current Status and Future Pathways. J. Nat. Fibers 2022, 19, 15963–15983. [Google Scholar] [CrossRef]
- Aldosari, S.M.; AlOtaibi, B.M.; Alblalaihid, K.S.; Aldoihi, S.A.; AlOgab, K.A.; Alsaleh, S.S.; Alshamary, D.O.; Alanazi, T.H.; Aldrees, S.D.; Alshammari, B.A. Mechanical Recycling of Carbon Fiber-Reinforced Polymer in a Circular Economy. Polymers 2024, 16, 1363. [Google Scholar] [CrossRef]
- Romani, A.; Mantelli, A.; Suriano, R.; Levi, M.; Turri, S. Additive Re-Manufacturing of Mechanically Recycled End-of-Life Glass Fiber-Reinforced Polymers for Value-Added Circular Design. Materials 2020, 13, 3545. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Ahmed, W.; Arshad, H.; Ullah, S. Recycling of the Glass/Carbon Fibre Reinforced Polymer Composites: A Step towards the Circular Economy. Polym.-Plast. Technol. Mater. 2022, 61, 761–788. [Google Scholar] [CrossRef]
- Elango, I.; Henderson, L.C.; Arumugam, V. Recycled Milled Fibres in Sustainable Composite Materials: A Comprehensive Review and Future Prospects. J. Reinf. Plast. Compos. 2024, 2024, 07316844241243128. [Google Scholar] [CrossRef]
- Julian, I.; García-Jiménez, A.; Aguado, A.; Arenal, C.; Calero, A.; Campos, V.; Escobar, G.; López-Buendía, A.M.; Romero, D.; Verdejo, E.; et al. Advances in the Circularity of End-of-Life Fibre-Reinforced Polymers by Microwave Intensification. Chem. Eng. Process.—Process Intensif. 2022, 178, 109015. [Google Scholar] [CrossRef]
- André, A.; Magdalena, J.; Cecilia, M.; Georgi, N.; Haghani, R. The Re-Use of End-of-Life Fiber Reinforced Polymer Composites in Construction. In 10th International Conference on FRP Composites in Civil Engineering; Ilki, A., Ispir, M., Inci, P., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2022; Volume 198, pp. 1183–1195. ISBN 978-3-030-88165-8. [Google Scholar]
Document Type | Record Count |
---|---|
Article | 528 |
Review article | 136 |
Proceedings paper | 85 |
Early access | 36 |
Book chapters | 14 |
Retracted publication | 2 |
Book review | 1 |
Data paper | 1 |
Keyword | Occurrences | Percentage Contribution (%) | Total Link Strength |
---|---|---|---|
Sustainability | 195 | 34.27 | 125 |
Recycling | 44 | 7.73 | 62 |
Mechanical properties | 84 | 14.76 | 47 |
Natural fibers | 38 | 6.68 | 36 |
Circular economy | 22 | 3.87 | 34 |
Composites | 37 | 6.50 | 30 |
Polymer composites | 19 | 3.34 | 20 |
Biocomposites | 25 | 4.39 | 19 |
Natural fiber | 35 | 6.15 | 18 |
Durability | 22 | 3.87 | 17 |
FRP | 16 | 2.81 | 12 |
Concrete | 16 | 2.81 | 11 |
Life cycle assessment | 16 | 2.81 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tănase, M.; Diniță, A.; Popovici, D.R.; Portoacă, A.I.; Călin, C.; Sirbu, E.-E. Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers. Fibers 2024, 12, 104. https://doi.org/10.3390/fib12120104
Tănase M, Diniță A, Popovici DR, Portoacă AI, Călin C, Sirbu E-E. Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers. Fibers. 2024; 12(12):104. https://doi.org/10.3390/fib12120104
Chicago/Turabian StyleTănase, Maria, Alin Diniță, Daniela Roxana Popovici, Alexandra Ileana Portoacă, Cătălina Călin, and Elena-Emilia Sirbu. 2024. "Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers" Fibers 12, no. 12: 104. https://doi.org/10.3390/fib12120104
APA StyleTănase, M., Diniță, A., Popovici, D. R., Portoacă, A. I., Călin, C., & Sirbu, E. -E. (2024). Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers. Fibers, 12(12), 104. https://doi.org/10.3390/fib12120104