Rapid Monitoring of Scale Precipitation and Inhibition in Geothermal Fluid Using Optical Fiber Sensor Based on Surface Plasmon Resonance
Abstract
:1. Introduction
2. Scale Sensor Overview
3. Materials and Methods
3.1. Optimization of Film Thickness of SPR Sensor via Laboratory Tests
3.2. Field Experiment
3.3. SEM-EDS Analysis of Scale Precipitates
4. Results and Discussion
4.1. Appropriate Film Thickness for SPR Sensor
4.2. Sensor Performance Evaluation via Field Experiment
4.3. SEM-EDS Observation of Precipitates on Sensor
4.4. SPR Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pátzay, G.; Stáhl, G.; Kármán, F.H.; Kálmán, E. Modeling of scale formation and corrosion from geothermal water. Electrochim. Acta 1998, 43, 137–147. [Google Scholar] [CrossRef]
- Dalas, E.; Koutsopoulos, S. The effect of UV radiation on calcium carbonate scale formation. J. Colloid Interface Sci. 1993, 155, 512–514. [Google Scholar] [CrossRef]
- Gallup, D.L. Brine pH modification scale control technology. Geotherm. Resour. Counc. Trans. 1996, 20, 749–755. [Google Scholar]
- Gallup, D.L. The interaction of silicic acid with sulfurous acid scale inhibitor. Geotherm. Resour. Counc. Trans. 1997, 21, 49–53. [Google Scholar]
- Gallup, D.L. Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 2002, 31, 415–430. [Google Scholar] [CrossRef]
- Ueda, A.; Kato, H.; Miyauchi, T.; Kato, K. Investigation of pH control method to avoid silica scaling in the Sumikawa geothermal field. J. Geotherm. Res. Soc. Jpn. 2003, 25, 163–177. [Google Scholar] [CrossRef]
- MacAdam, J.; Parsons, S.A. Calcium carbonate scale formation and control. Rev. Environ. Sci. Biotechnol. 2004, 3, 159–169. [Google Scholar] [CrossRef]
- Gallup, D.L.; Barcelon, E. Investigations of organic inhibitors for silica scale control from geothermal brines—II. Geothermics 2005, 34, 756–771. [Google Scholar] [CrossRef]
- Li, X.; Gao, B.; Yue, Q.; Ma, D.; Rong, H.; Zhao, P.; Teng, P. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures. J. Environ. Sci. 2015, 29, 124–130. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Yao, Q.; Wang, T.; Zhang, A.; Chen, Y.; Wu, W.; Sun, W. Preparation and evaluation of a polyether-based polycarboxylate as a kind of inhibitor for water systems. Ind. Eng. Chem. Res. 2017, 56, 2624–2633. [Google Scholar] [CrossRef]
- Alabi, A.; Chiesa, M.; Garlisi, C.; Palmisano, G. Advances in anti-scale magnetic water treatment. Environ. Sci. Water Res. Technol. 2015, 1, 408–425. [Google Scholar] [CrossRef]
- Ikeda, R.; Ueda, A. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan. Geothermics 2017, 70, 305–313. [Google Scholar] [CrossRef]
- Hanajima, E.; Ueda, A. Recovery of oversaturated silica from Takigami and Sumikawa geothermal brines with cationic polymer flocculants to prevent silica scale deposition. Geothermics 2017, 70, 271–280. [Google Scholar] [CrossRef]
- Hirowatari, K. Scale prevention method by brine acidification with biochemical reactors. Geothermics 1996, 25, 259–270. [Google Scholar] [CrossRef]
- Okazaki, T.; Imai, K.; Tan, S.Y.; Yong, Y.T.; Rahman, F.A.; Hata, N.; Taguchi, S.; Ueda, A.; Kuramitz, H. Fundamental study on the development of fiber optic sensor for real-time sensing of CaCO3 scale formation in geothermal water. Anal. Sci. 2015, 31, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Orii, T.; Ueda, A.; Kuramitz, H. A reusable fiber optic sensor for the real-time sensing of CaCO3 scale formation in geothermal water. IEEE Sens. J. 2017, 17, 1207–1208. [Google Scholar] [CrossRef]
- Okazaki, T.; Orii, T.; Ueda, A.; Ozawa, A.; Kuramitz, H. Fiber optic sensor for real-time sensing of silica scale formation in geothermal water. Sci. Rep. 2017, 7, 3387. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Yamamoto, T.; Taguchi, A.; Ueda, A.; Kuramitz, H. Fiber optic sensor with an optically transparent electrode for monitoring CaCO3 scale formation in geothermal water. IEEE Sens. Lett. 2017, 1, 2000104. [Google Scholar] [CrossRef]
- Okazaki, T.; Umeki, S.; Orii, T.; Ikeya, R.; Sakaguchi, A.; Yamamoto, T.; Watanabe, T.; Ueda, A.; Kuramitz, H. Investigation of the effects of electromagnetic field treatment of hot spring water for scale inhibition using a fibre optic sensor. Sci. Rep. 2019, 9, 10719. [Google Scholar] [CrossRef]
- Okazaki, T.; Seto, R.; Watanabe, T.; Ueda, A.; Kuramitz, H. U-shaped polymer cladding and hetero-core fiber optic sensors for monitoring scale formation in geothermal brine. Anal. Lett. 2020, 53, 2160–2169. [Google Scholar] [CrossRef]
- Okazaki, T.; Kuramitz, H.; Watanabe, T.; Ueda, A. Scale sensor: Rapid monitoring of scale deposition and inhibition using fiber optics in a geothermal system and comparison with other monitoring devices. Geothermics 2021, 93, 102069. [Google Scholar] [CrossRef]
- Okazaki, T.; Kamio, H.; Yoshioka, H.; Ueda, A.; Kuramitz, H.; Watanabe, T. U-shaped plastic optical fiber sensor for scale deposition in hot spring water. Anal. Sci. 2022, 38, 1549–1554. [Google Scholar] [CrossRef]
- Zotzmann, J.; Hastreiter, N.; Mayanna, S.; Reinsch, T.; Regenspurg, S. A fibre-optical method for monitoring barite precipitation at high pressure/high temperature conditions. Appl. Geochem. 2021, 127, 104906. [Google Scholar] [CrossRef]
- Qu, J.-H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal. Chim. Acta 2020, 1104, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tong, R.-J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectronics 2019, 142, 111505. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Tabassum, R.; Kant, R. Recent trends in surface plasmon resonance based fiber-optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens. Actuators B Chem. 2020, 310, 127813. [Google Scholar] [CrossRef]
- Lee, S.; Song, H.; Ahn, H.; Kim, S.; Choi, J.-r.; Kim, K. Fiber-Optic Localized Surface Plasmon Resonance Sensors Based on Nanomaterials. Sensors 2021, 21, 819. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J.-h. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef]
- Herrera-Domínguez, M.; Morales-Luna, G.; Mahlknecht, J.; Cheng, Q.; Aguilar-Hernández, I.; Ornelas-Soto, N. Optical biosensors and their applications for the detection of water pollutants. Biosensors 2023, 13, 370. [Google Scholar] [CrossRef]
- Kourti, D.; Angelopoulou, M.; Petrou, P.; Kakabakos, S. Optical immunosensors for bacteria detection in food matrices. Chemosensors 2023, 11, 430. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Qian, Y.; Yin, X.; Wang, L.; Zhang, S.; Wang, Y. Research on fiber optic surface plasmon resonance biosensors: A review. Photonic Sens. 2024, 14, 240201. [Google Scholar] [CrossRef]
- Ueda, A.; Odashima, Y. Experimental study of stability of amorphous Mg-SiO2 scale up to 300 °C. J. Geotherm. Res. Soc. Jpn 2002, 24, 207–213, (In Japanese with English Abstract). [Google Scholar]
- Morita, M.; Umezawa, O. A model of scale formation on inner carbon steel pipe walls for transporting hot spring water. Mater. Trans. 2016, 57, 1652–1659. [Google Scholar] [CrossRef]
- Roy, D. Surface plasmon resonance spectroscopy of dielectric coated gold and silver films on supporting metal layers: Reflectivity formulas in the kretschmann formalism. Appl. Spectrosc. 2001, 55, 1046–1052. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, B.D. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 2007, 101, 09311. [Google Scholar] [CrossRef]
Sampling Date | 13 November 2022 |
---|---|
Water temperature (°C) | 99.0 |
pH | 7.93 |
EC (mS/m) | 1469 |
ORP (mV) | −204 |
Chemical composition | Concentration (mg/L) |
Na+ | 2467 |
K+ | 300 |
Ca2+ | 141 |
Mg2+ | 146 |
Total-Fe | <0.5 |
Cl− | 4620 |
SO42− | 323 |
HCO3− | 219 |
SiO2 | 244 |
(a) | |
Chemical Composition | Atom % |
Ca | 1.6 |
Mg | 3.77 |
Fe | 5.68 |
Si | 23.5 |
O | 65.4 |
(b) | |
Chemical Composition | Atom % |
Ca | ND |
Mg | 1.19 |
Fe | 4.52 |
Si | 29.7 |
O | 64.6 |
(c) | |
Chemical Composition | Atom % |
Ca | 0.07 |
Mg | 0.26 |
Fe | 0.54 |
Si | 33.3 |
O | 65.8 |
(d) | |
Chemical Composition | Atom % |
Ca | 0.01 |
Mg | 0.08 |
Fe | 0.12 |
Si | 53.4 |
O | 46.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosoki, A.; Sugiura, K.; Okazaki, T.; Yang, H.; Kuramitz, H.; Ueda, A.; Terai, A. Rapid Monitoring of Scale Precipitation and Inhibition in Geothermal Fluid Using Optical Fiber Sensor Based on Surface Plasmon Resonance. Fibers 2024, 12, 74. https://doi.org/10.3390/fib12090074
Hosoki A, Sugiura K, Okazaki T, Yang H, Kuramitz H, Ueda A, Terai A. Rapid Monitoring of Scale Precipitation and Inhibition in Geothermal Fluid Using Optical Fiber Sensor Based on Surface Plasmon Resonance. Fibers. 2024; 12(9):74. https://doi.org/10.3390/fib12090074
Chicago/Turabian StyleHosoki, Ai, Kifuyu Sugiura, Takuya Okazaki, Heejun Yang, Hideki Kuramitz, Akira Ueda, and Amane Terai. 2024. "Rapid Monitoring of Scale Precipitation and Inhibition in Geothermal Fluid Using Optical Fiber Sensor Based on Surface Plasmon Resonance" Fibers 12, no. 9: 74. https://doi.org/10.3390/fib12090074
APA StyleHosoki, A., Sugiura, K., Okazaki, T., Yang, H., Kuramitz, H., Ueda, A., & Terai, A. (2024). Rapid Monitoring of Scale Precipitation and Inhibition in Geothermal Fluid Using Optical Fiber Sensor Based on Surface Plasmon Resonance. Fibers, 12(9), 74. https://doi.org/10.3390/fib12090074