Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawandy, N.M.; Balachandran, R.M.; Gomes, A.S.L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- de Matos, C.J.; Menezes, L.D.S.; Brito-Silva, A.M.; Martinez Gámez, M.A.; Gomes, A.S.; de Araújo, C.B. Random fiber laser. Phys. Rev. Lett. 2007, 99, 153903. [Google Scholar] [CrossRef] [PubMed]
- Frolov, S.; Gellermann, W.; Ozaki, M.; Yoshino, K.; Vardeny, Z. Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 1997, 78, 729. [Google Scholar] [CrossRef]
- Dice, G.D.; Mujumdar, S.; Elezzabi, A.Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett. 2005, 86, 131105. [Google Scholar] [CrossRef]
- Chang, S.-W.; Liao, W.-C.; Liao, Y.-M.; Lin, H.-I.; Lin, H.-Y.; Lin, W.-J.; Lin, S.-Y.; Perumal, P.; Haider, G.; Tai, C.-T.; et al. A white random laser. Sci. Rep. 2018, 8, 2720. [Google Scholar] [CrossRef]
- Parola, S.; Julián-López, B.; Carlos, L.D.; Sanchez, C. Optical properties of hybrid organic-inorganic materials and their applications. Adv. Funct. Mater. 2016, 26, 6506–6544. [Google Scholar] [CrossRef]
- Sapienza, R. Determining random lasing action. Nat. Rev. Phys. 2019, 1, 690–695. [Google Scholar] [CrossRef]
- Luan, F.; Gu, B.; Gomes, A.S.; Yong, K.-T.; Wen, S.; Prasad, P.N. Lasing in nanocomposite random media. Nano Today 2015, 10, 168–192. [Google Scholar] [CrossRef]
- Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A Math. Gen. 2005, 38, 10497–10535. [Google Scholar] [CrossRef]
- Meng, X.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K. Plasmonically controlled lasing resonance with metallic-dielectric core shell nanoparticles. Nano Lett. 2011, 11, 1374–1378. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Shi, J.; Wang, Y.; Zheng, R.; Chen, X.; Gong, W.; Liu, D. Retrieval of contaminated information using random lasers. Appl. Phys. Lett. 2015, 106, 201101. [Google Scholar] [CrossRef]
- Churkin, D.V.; Sugavanam, S.; Vatnik, I.D.; Wang, Z.; Podivilov, E.V.; Babin, S.A.; Rao, Y.; Turitsyn, S.K. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photonics 2015, 7, 516–569. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Z.; Qiu, Z.; Zhang, P.; Wu, J.; Zhang, D.; Xiang, T. Random lasing in human tissues embedded with organic dyes for cancer diagnosis. Sci. Rep. 2017, 7, 8385. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Rao, Y.J.; Zhang, W.L.; Hu, B. Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–6. [Google Scholar] [CrossRef]
- Mermillod-Blondin, A.; Mentzel, H.; Rosenfeld, A. Time-resolved microscopy with random lasers. Opt. Lett. 2013, 38, 4112–4115. [Google Scholar] [CrossRef]
- Han, B.; Cheng, Q.; Tao, Y.; Ma, Y.; Liang, H.; Ma, R.; Qi, Y.; Zhao, Y.; Wang, Z.; Wu, H. Spectral manipulations of random fiber lasers: Principles, characteristics, and applications. Laser Photonics Rev. 2024, 18, 2400122. [Google Scholar] [CrossRef]
- Toudert, J.; Serna, R.; Jimenez de Castro, M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 2012, 116, 20530–20539. [Google Scholar] [CrossRef]
- Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Synthesis and characterization of Bismuth-Silver nanoparticles for electrochemical sensor applications. Anal. Lett. 2015, 48, 1311–1332. [Google Scholar] [CrossRef]
- Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Firstov, S.V.; Khegai, A.M.; Kharakhordin, A.V.; Alyshev, S.V.; Firstova, E.G.; Ososkov, Y.J.; Melkumov, M.A.; Iskhakova, L.D.; Evlampieva, E.B.; Lobanov, A.S.; et al. Compact and efficient o-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications. Sci. Rep. 2020, 10, 11347. [Google Scholar] [CrossRef] [PubMed]
- Vakhrushev, A.; Umnikov, A.; Lobanov, A.; Firstova, E.G.; Evlampieva, E.B.; Riumkin, K.; Alyshev, A.V.; Khegai, A.; Guryanov, A.; Iskhakova, L.D.; et al. W-type and graded-index bismuth-doped fibers for efficient lasers and amplifiers operating in E-band. Opt. Express 2022, 30, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Khegai, A.; Alyshev, S.; Vakhrushev, A.; Riumkin, K.; Umnikov, A.; Firstov, S. Recent advances in Bi-doped silica-based optical fibers: A short review. J. Non-Cryst. Solids X 2022, 16, 100126. [Google Scholar] [CrossRef]
- Hernandez, M.A.V.; Martinez Gámez, M.A.; Martínez, J.L.L.; Kir’yanov, A.V. Enhanced near-infrared emission from holmium-ytterbium co-doped phosphate glasses containing silver nanoparticles. Appl. Spectrosc. 2014, 68, 1247–1253. [Google Scholar] [CrossRef]
- Vallejo Hernandez, M.; Martinez Gámez, M.A.; Kir’yanov, A.; Martinez, J. Optical properties of phosphate glasses co-doped with Yb3+ and silver nanoparticles. Chin. Phys. B 2014, 23, 124214. [Google Scholar]
- Vijayakumar, R.; Nagaraj, R.; Suthanthirakumar, P.; Karthikeyan, P.; Marimuthu, K. Silver (Ag) nanoparticles enhanced luminescence properties of Dy3+ ions in borotellurite glasses for white light applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 537–547. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Marimuthu, K. Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses. J. Alloys Compd. 2016, 665, 294–303. [Google Scholar] [CrossRef]
- Bae, C.-H.; Lim, K.-S. Enhanced visible emission in Eu3+ doped glass containing Ag-clusters, Ag nanoparticles, and ZnO nanocrystals. J. Alloys Compd. 2019, 793, 410–417. [Google Scholar] [CrossRef]
- Pan, Z.; Ueda, A.; Aga, R., Jr.; Burger, A.; Mu, R.; Morgan, S. Spectroscopic studies of Er3+ doped Ge-Ga-S glass containing silver nanoparticles. J. Non-Cryst. Solids 2010, 356, 1097–1101. [Google Scholar] [CrossRef]
- Cheng, P.; Zhou, Y.; Su, X.E.; Zhou, M.; Zhou, Z. The near-infrared band luminescence in silver NPs embedded tellurite glass doped with Er3+/Tm3+/Yb3+ ions. J. Alloys Compd. 2017, 714, 370–380. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, L.; Meng, S.; Du, C.; Hou, J.; Liu, Y.; Guo, Y.; Fang, Y.; Liao, M.; Zou, J.; et al. Facile preparation of plasmon enhanced near-infrared photoluminescence of Er3+ doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier. J. Lumin. 2019, 206, 164–168. [Google Scholar] [CrossRef]
- Swetha, B.; Keshavamurthy, K.; Jagannath, G. Influence of size of ag np on spectroscopic performances of Eu3+ ions in sodium borate glass host. Optik 2021, 240, 166918. [Google Scholar] [CrossRef]
- Kindrat, I.I.; Padlyak, B.V.; Lisiecki, R.; Drzewiecki, A.; Adamiv, V.T. Effect of silver co-doping on luminescence of the Pr3+-doped lithium tetraborate glass. J. Lumin. 2022, 241, 118468. [Google Scholar] [CrossRef]
- Dan, H.K.; Trung, N.D.; Tam, N.M.; Ha, L.T.; Lien, T.K.; Thai, N.L.; Zhou, D.; Qiu, J. The effect of Al3+ ions on the self-reduction process of Yb3+ to Yb2+ ions and optical properties of Nd3+/Ybn+ (n = 3, 2) co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals and Ag nanoparticles. Ceram. Int. 2024, 50, 25412–25421. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Melkumov, M.A.; Firstov, S.V.; Riumkin, K.E.; Shubin, A.V.; Khopin, V.F.; Guryanov, A.N.; Dianov, E.M. Bi-doped optical fibers and fiber lasers. IEEE J. Select. Top. Quant. Electron. 2014, 20, 0903815. [Google Scholar] [CrossRef]
- Dianov, E.; Melkumov, M.; Firstov, S. Bismuth-doped fibre lasers and optical amplifiers. In Handbook of Laser Technology and Applications; CRC Press: Boca Raton, FL, USA, 2021; pp. 535–556. [Google Scholar]
- Khonthon, S.; Morimoto, S.; Arai, Y.; Ohishi, Y. Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Opt. Mater. 2009, 31, 1262–1268. [Google Scholar] [CrossRef]
- Peng, M.; Zollfrank, C.; Wondraczek, L. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature. J. Phys. Condens. Matter 2009, 21, 285106. [Google Scholar] [CrossRef]
- Singh, S.P.; Karmakar, B. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag: Bismuth glass nanocomposites. Plasmonics 2011, 6, 457–467. [Google Scholar] [CrossRef]
- Halder, A.; Kir’yanov, A.V.; Barmenkov, Y.O.; Sekiya, E.H.; Saito, K. Discussion on Raleigh scattering as a dominant loss factor in VIS/NIR in bismuth-doped silicate fibers [invited]. Opt. Mater. Express 2019, 9, 2817–2827. [Google Scholar]
- Krishnan, M.L.; Neethish, M.; Kumar, V.R.K.; Vendamani, V.; Devi, K.D.; Mohan, D.B.; Nandhagopal, P.; Behera, N. Photoluminescence & structural studies of Ag: Alkali bismuth silicate glasses. Optik 2023, 273, 170474. [Google Scholar]
- Zhu, H.; He, Z.; Wang, J.; Zhang, W.; Pei, C.; Ma, R.; Zhang, J.; Wei, J.; Liu, W. Microcavity complex lasers: From order to disorder. Ann. Phys. 2024, 536, 2400112. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, H.; Xu, L.; Fu, B.; Liu, X.; Zhang, H. Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics. ACS Photonics 2023, 10, 3133–3142. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, J.; Wang, Y.; Wang, X.; Fu, B. Ag/MXene as saturable absorber for Tm:Ho co-doped Q-switched fiber laser. Nanomaterials 2024, 14, 951. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Zhang, H.; Fu, B.; Wang, J.; Qiu, M. Pulsed polarized vortex beam enabled by metafiber lasers. PhotoniX 2024, 5, 36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente León, J.A.; Martínez Gámez, M.A.; Lucio Martinez, J.L.; Kir’yanov, A.V.; Hernández Chahín, K.G.; Paul, M.C. Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip. Fibers 2025, 13, 17. https://doi.org/10.3390/fib13020017
de la Fuente León JA, Martínez Gámez MA, Lucio Martinez JL, Kir’yanov AV, Hernández Chahín KG, Paul MC. Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip. Fibers. 2025; 13(2):17. https://doi.org/10.3390/fib13020017
Chicago/Turabian Stylede la Fuente León, José Augusto, Ma. Alejandrina Martínez Gámez, José Luis Lucio Martinez, Alexander V. Kir’yanov, Karim Gibrán Hernández Chahín, and Mukul Chandra Paul. 2025. "Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip" Fibers 13, no. 2: 17. https://doi.org/10.3390/fib13020017
APA Stylede la Fuente León, J. A., Martínez Gámez, M. A., Lucio Martinez, J. L., Kir’yanov, A. V., Hernández Chahín, K. G., & Paul, M. C. (2025). Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip. Fibers, 13(2), 17. https://doi.org/10.3390/fib13020017