Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Lignocellulosic Materials
2.1.2. Binding Materials
2.2. Methods
2.2.1. Fiber Grinding
2.2.2. Fiber Morphology Analysis
2.2.3. Preparation of the pH-Modified Fiber FTIR Spectroscopy Analysis
2.2.4. Fibers’ pH Modification for the Panels Production
2.2.5. FTIR Spectroscopy Analysis
2.2.6. Panel Manufacturing
3. Results and Discussion
3.1. Results of Fiber Morphology Analysis
3.2. Results of Fourier Tranform Infrared (FTIR) Spectroscopy Analysis
3.2.1. Bagasse Fiber
3.2.2. Kenaf Fiber
3.2.3. Hemp Fiber
3.3. Mechanical Properties
3.3.1. Internal Bond (IB)
3.3.2. Modulus of Elasticity (MOE) and Modulus of Rupture (MOR)
3.4. Physical Properties
Thickness Swelling for 2 h and 24 h
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002, 10, 19–26. [Google Scholar] [CrossRef]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Ecol. 2012, 16, S169–S181. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pedzik, M.; Rogozinski, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Owodunni, A.A.; Lamaming, J.; Hashim, R.; Taiwo, O.F.A.; Hussin, M.H.; Mohamad Kassim, M.H.; Bustami, Y.; Sulaiman, O.; Amini, M.H.M.; Hiziroglu, S. Adhesive Application on Particleboard from Natural Fibers: A Review. Polym. Compos. 2020, 41, 4448–4460. [Google Scholar] [CrossRef]
- Antov, P.; Krišt’ák, L.; Réh, R.; Savov, V.; Papadopoulos, A.N. Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate. Polymers 2021, 13, 639. [Google Scholar] [CrossRef]
- Janiszewska, D.; Frackowiak, I.; Mytko, K. Exploitation of Liquefied Wood Waste for Binding Recycled Wood Particleboards. Holzforschung 2016, 70, 1135–1138. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative Lignocellulosic Raw Materials in Particleboard Production: A Review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Mirski, R.; Dukarska, D.; Walkiewicz, J.; Derkowski, A. Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams. Mater 2021, 14, 4781. [Google Scholar] [CrossRef]
- Jivkov, V.; Simeonova, R.; Antov, P.; Marinova, A.; Petrova, B.; Kristak, L. Structural Application of Lightweight Panels Made of Waste Cardboard and Beech Veneer. Mater 2021, 14, 5064. [Google Scholar] [CrossRef]
- FAO. Forestry Production and Trade; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-Wood Lignocellulosic Composites. In Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 947–977. [Google Scholar]
- Youngquist, J.A. Wood-Based Composites and Panel Products. In Wood Handbook: Wood as an Engineering Material; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; pp. 1–31. [Google Scholar]
- Youngquist, J.A. Wood-Based Panels: Their Properties and Uses. A Review; FAO: Rome, Italy, 1987. [Google Scholar]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Bekhta, P. Recent Developments in Eco-Friendly Wood-Based Composites II. Polymers 2023, 15, 1941. [Google Scholar] [CrossRef] [PubMed]
- Mursalin, R.; Islam, M.W.; Moniruzzaman, M.; Zaman, M.F.; Azmain Abdullah, M. Fabrication and Characterization of Natural Fiber Composite Material. In Proceedings of the International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Dicker, M.P.M.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green Composites: A Review of Material Attributes and Complementary Applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Bhatia, G.S.; Andrew, J.J.; Arockiarajan, A. Experimental Investigation on Compressive Behaviour of Different Patch–Parent Layup Configurations for Repaired Carbon/Epoxy Composites. J. Compos. Mater. 2019, 53, 3269–3279. [Google Scholar] [CrossRef]
- Miller, G.D.; Fuller, M.J. Kenaf Core as a Board Raw Material. For. Prod. J. 1993, 43, 69. [Google Scholar]
- Kalaycioglu, H.; Nemli, G. Producing Composite Particleboard from Kenaf (Hibiscus cannabinus L.) Stalks. Ind. Crops Prod. 2006, 24, 177–180. [Google Scholar] [CrossRef]
- Saad, M.J.; Kamal, I. Kenaf Core Particleboard and Its Sound Absorbing Properties. J. Sci. Technol. 2012, 4, 23–34. Available online: https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/599 (accessed on 19 August 2025).
- Atoyebi, O.D.; Osueke, C.O.; Badiru, S.; Gana, A.J.; Ikpotokin, I.; Modupe, A.E.; Tegene, G.A. Evaluation of Particle Board from Sugarcane Bagasse and Corn Cob. Int. J. Mech. Eng. Technol. 2019, 10, 1193–1200. [Google Scholar]
- Silva, M.R.; Pinheiro, R.V.; Christoforo, A.L.; Panzera, T.H.; Rocco Lahr, F.A. Hybrid Sandwich Particleboard Made with Sugarcane, Pínus Taeda Thermally Treated and Malva Fibre from Amazon. Mater. Res. 2017, 21, e20170724. [Google Scholar] [CrossRef]
- Buzo, A.L.S.C.; Silva, S.A.M.; De Moura Aquino, V.B.; Chahud, E.; Branco, L.A.M.N.; De Almeida, D.H.; Christoforo, A.L.; Almeida, J.P.B.; Lahr, F.A.R. Addition of Sugarcane Bagasse for the Production of Particleboards Bonded with Urea-Formaldehyde and Polyurethane Resins. Wood Res. 2020, 65, 727–736. [Google Scholar] [CrossRef]
- Mendes, R.F.; Mendes, L.M.; Guimarães Júnior, J.B.; dos Santos, R.C.; Bufalino, L.; Bufalino, L. The Adhesive Effect on the Properties of Particleboards Made from Sugar Cane Bagasse Generated in the Distiller. Rev. Ciências Agrárias 2009, 32, 209–218. [Google Scholar]
- Mendes, R.F.; Mendes, L.M.; Oliveira, S.L.; Freire, T.P. Use of Sugarcane Bagasse for Particleboard Production. Key Eng. Mater. 2015, 634, 163–171. [Google Scholar] [CrossRef]
- Silva Brito, F.M.; Bortoletto Júnior, G.; Surdi, P.G. Properties of Particleboards Made from Sugarcane Bagasse Particles. Braz. J. Agric. Sci. Bras. Ciências Agrárias 2021, 16, 1–7. [Google Scholar]
- Magzoub, R.; Osman, Z.; Tahir, P.; Nasroon, T.H.; Kantner, W. Comparative Evaluation of Mechanical and Physical Properties of Particleboard Made from Bagasse Fibers and Improved by Using Different Methods. Cellul. Chem. Technol. 2015, 49, 537–542. [Google Scholar]
- Ahmadi, P.; Efhamisisi, D.; Thévenon, M.-F.; Hosseinabadi, H.Z.; Oladi, R.; Gerard, J. Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One Prod. Phys.-Mech. Prop. J. Renew. Mater. 2024, 12, 1715–1728. [Google Scholar] [CrossRef]
- Zvirgzds, K.; Kirilovs, E.; Kukle, S.; Gross, U. Production of Particleboard Using Various Particle Size Hemp Shives as Filler. Materials 2022, 15, 886. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Chrysafi, I.; Karidi, K.; Mitani, A.; Bikiaris, D.N. Particleboards with Recycled Material from Hemp-Based Panels. Materials 2023, 17, 139. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B.; Gutowski, W.S.; Wilson, D. Influence of Particle Granulometry and Panel Composition on the Physico-mechanical Properties of Ultra-low-density Hemp Hurd Particleboard. Polym. Compos. 2023, 44, 7363–7383. [Google Scholar] [CrossRef]
- Rimkienė, A.; Vėjelis, S.; Kremensas, A.; Vaitkus, S.; Kairytė, A. Development of High Strength Particleboards from Hemp Shives and Corn Starch. Materials 2023, 16, 5003. [Google Scholar] [CrossRef] [PubMed]
- Alao, P.; Tobias, M.; Kallakas, H.; Poltimäe, T.; Kers, J.; Goljandin, D. Development of Hemp Hurd Particleboards from Formaldehyde-Free Resins. Agron. Res. 2020, 18, 679–688. [Google Scholar] [CrossRef]
- Placet, V. Characterization of the Thermo-Mechanical Behaviour of Hemp Fibres Intended for the Manufacturing of High Performance Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1111–1118. [Google Scholar] [CrossRef]
- Auriga, R.; Pędzik, M.; Mrozowski, R.; Rogoziński, T. Hemp Shives as a Raw Material for the Production of Particleboards. Polymers 2022, 14, 5308. [Google Scholar] [CrossRef] [PubMed]
- Kukle, S.; Putnina, A.; Gravitis, J. Hemp Fibres and Shives, Nano-and Micro-Composites. In Sustainable Development, Knowledge Society and Smart Future Manufacturing Technologies; Springer: Cham, Switzerland, 2015; pp. 291–305. [Google Scholar]
- Nguyen, Q. How Sustainable Is Particle Board (LDF)? Here Are the Facts|Impactful Ninja. Available online: https://impactful.ninja/how-sustainable-is-particle-board-ldf/ (accessed on 28 March 2025).
- Lykidis, C.; Grigoriou, A. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards. Waste Manag. 2008, 28, 57–63. [Google Scholar] [CrossRef]
- Aikaterini, R.; Andromachi, M.; Koutsianitis, D.; Geogios, N. Mechanical and Physical Properties of Particleboards Made from Different Mixtures of Industrial Hemp (Cannabis sativa L.) and Wood. Acad. J. Agric. Res. 2019, 3, 359–362. [Google Scholar] [CrossRef]
- Chhetri, S.; Bougherara, H. A Comprehensive Review on Surface Modification of UHMWPE Fiber and Interfacial Properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Iždinský, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from Recycled Wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Martínez Suárez, C.; Rojas Montejo, P.; Gutiérrez Junco, O. Effects of Alkaline Treatments on Natural Fibers. J. Phys. Conf. Ser. 2021, 2046, 012056. [Google Scholar] [CrossRef]
- Fnides, M.; Amroune, S.; Belaadi, A.; Saada, K.; Chai, B.X.; Abdullah, M.M.S.; Alshaikh, I.M.H.; Ghernaout, D.; Al-Khawlani, A. Modeling and Optimizing the Alkaline Treatment Process to Enhance the Date Palm Fibers’ Tensile Mechanical Properties Using RSM. J. Nat. Fibers 2024, 21, 2384663. [Google Scholar] [CrossRef]
- Arunachalam, S.J.; Saravanan, R.; Anbuchezhiyan, G. An Overview on Chemical Treatment in Natural Fiber Composites. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Bakri, M.K.B.; Jayamani, E.; Hamdan, S.; Rahman, M.; Soon, K.H.; Kakar, A. Fundamental Study on the Effect of Alkaline Treatment on Natural Fibers Structures and Behaviors. J. Eng. Appl. Sci. 2016, 11, 8759–8763. [Google Scholar]
- Ait-Abdellah, A.; Belcadi, O.; Balla, M.A.I.T.; Bounouader, H.; Kaddami, H.; Abidi, N.; Arrakhiz, F.-E. Alkaline Treatment of Sugarcane Bagasse Fibers for Biocomposite Applications. Cellul. Chem. Technol. 2024, 58, 561–575. [Google Scholar] [CrossRef]
- Litaiff, H.A.; dos Santos, G.M.; de Melo, G.; da Cunha, C.; Giacon, V.M. Influence of Alkali Treatment on Physical-Mechanical Properties of Mallow Fiber/BOPP Composites. Polímeros 2025, 35, e20250006. [Google Scholar] [CrossRef]
- Wang, X.; Chang, L.; Shi, X.; Wang, L. Effect of Hot-Alkali Treatment on the Structure Composition of Jute Fabrics and Mechanical Properties of Laminated Composites. Materials 2019, 12, 1386. [Google Scholar] [CrossRef]
- Parida, C.; Dash, S.K.; Pradhan, C. FTIR and Raman Studies of Cellulose Fibers of Luffa Cylindrica. Open J. Compos. Mater. 2014, 5, 5–10. [Google Scholar]
- Alsafran, M.; Sadasivuni, K.K.; Haneesh, J.M.; Kasote, D.M. Extraction and Characterization of Natural Fibers from Pulicaria Gnaphalodes Plant and Effect of Alkali Treatment on Their Physicochemical and Antioxidant Properties. Front. Chem. 2024, 12, 1437277. [Google Scholar] [CrossRef]
- Ismail, N.F.; Mohd Radzuan, N.A.; Sulong, A.B.; Muhamad, N.; Che Haron, C.H. The Effect of Alkali Treatment on Physical, Mechanical and Thermal Properties of Kenaf Fiber and Polymer Epoxy Composites. Polymers 2021, 13, 2005. [Google Scholar] [CrossRef]
- Pankaj; Jawalkar, C.S.; Kant, S. Critical Review on Chemical Treatment of Natural Fibers to Enhance Mechanical Properties of Bio Composites. Silicon 2022, 14, 5103–5124. [Google Scholar] [CrossRef]
- Gonçalves, D.; Bordado, J.M.; Marques, A.C.; Dos Santos, R.G. Non-Formaldehyde, Bio-Based Adhesives for Use in Wood-Based Panel Manufacturing Industry—A Review. Polymers 2021, 13, 4086. [Google Scholar] [CrossRef]
- He, G.; Yan, N. Influence of the Synthesis Conditions on the Curing Behavior of Phenol–Urea–Formaldehyde Resol Resins. J. Appl. Polym. Sci. 2005, 95, 1368–1375. [Google Scholar] [CrossRef]
- Chrobak, J.; Iłowska, J.; Chrobok, A. Formaldehyde-Free Resins for the Wood-Based Panel Industry: Alternatives to Formaldehyde and Novel Hardeners. Molecules 2022, 27, 4862. [Google Scholar] [CrossRef] [PubMed]
- Stefanowski, B.; Spear, M.; Pitman, A.; Stefanowski, B.K.; Spear, M.J. Review of the Use of PF and Related Resins for Modification of Solid Wood; Bangor University: Wales, UK, 2018; pp. 165–179. [Google Scholar]
- Kumar, R.N.; Pizzi, A. Environmental Aspects of Adhesives–Emission of Formaldehyde. In Adhesives for Wood and Lignocellulosic Materials; Wiley-Scrivener: Hoboken, NJ, USA, 2019; pp. 293–312. [Google Scholar]
- Yang, W.; Rallini, M.; Natali, M.; Kenny, J.; Ma, P.; Dong, W.; Torre, L.; Puglia, D. Preparation and Properties of Adhesives Based on Phenolic Resin Containing Lignin Micro and Nanoparticles: A Comparative Study. Mater. Des. 2019, 161, 55–63. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Franciszczak, P.; Osman, Z.; Elbadawi, M. Polypropylene Biocomposites Reinforced with Softwood, Abaca, Jute, and Kenaf Fibers. Ind. Crops Prod. 2015, 70, 91–99. [Google Scholar] [CrossRef]
- Osman, Z.; Elamin, M.; Ghorbel, E.; Charrier, B. Influence of Alkaline Treatment and Fiber Morphology on the Mechanical, Physical, and Thermal Properties of Polypropylene and Polylactic Acid Biocomposites Reinforced with Kenaf, Bagasse, Hemp Fibers and Softwood. Polymers 2025, 17, 844. [Google Scholar] [CrossRef] [PubMed]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- BS EN 326-1:1994; Wood-Based Panels—Sampling, Cutting and Inspection. BSI Standards Limited: London, UK, 1994.
- BS EN 319:1993; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane. BSI Standards Limited: London, UK, 1993.
- EN 310:1993; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. BSI Standards Limited: London, UK, 1993.
- EN 317:1993; Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water. BSI Standards Limited: London, UK, 1993.
- Ullah, S.; Palevicius, A.; Janusas, G.; Ul-Hasan, Z. Enhancing Mechanical and Impact Properties of Flax/Glass and Jute/Glass Hybrid Composites Through KOH Alkaline Treatment. Polymers 2025, 17, 804. [Google Scholar] [CrossRef]
- Lopena, J.D.; Millare, J.C. Mechanical Properties, Fracture Morphology and Thermal Analysis of Untreated and Alkaline Treated Salago Fiber Epoxy Laminated Composites. Mater. Res. Express 2021, 8, 45307. [Google Scholar] [CrossRef]
- Rai, P.S.; Unnikrishnan, S.; Chandrashekar, A. Influence of Alkali Treatment on Physiochemical and Morphological Properties of Palmyra Fibers. Ind. Crops Prod. 2025, 224, 120298. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Khalina, A.; Zainudin, E.S.; Al-Shuja’a, O.M. Effect of Alkali Treatment on Mechanical and Thermal Properties of Kenaf Fiber-Reinforced Thermoplastic Polyurethane Composite. J. Therm. Anal. Calorim. 2012, 109, 1435–1443. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of Chemical Treatments on Mechanical Properties of Hemp Fiber Reinforced Composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Suardana, N.P.G.; Piao, Y.; Lim, J.K. Mechanical Properties of Hemp Fibers and Hemp/Pp Composites: Effects of Chemical Surface Treatment. Mater. Phys. Mech. 2011, 11, 1–8. [Google Scholar]
- Deshmukh, G.S. Advancement in Hemp Fibre Polymer Composites: A Comprehensive Review. J. Polym. Eng. 2022, 42, 575–598. [Google Scholar] [CrossRef]
- EN 312-4:2010; Particleboards—Specifications—Part 4: Load-Bearing Boards for Use in Humid Conditions. BSI Standards Limited: London, UK, 2010.
- Sarkar, S.; Adhikari, B. Lignin-Modified Phenolic Resin: Synthesis Optimization, Adhesive Strength, and Thermal Stability. J. Adhes. Sci. Technol. 2000, 14, 1179–1193. [Google Scholar] [CrossRef]
- Peng, F.; Ren, J.-L.; Xu, F.; Bian, J.; Peng, P.; Sun, R.-C. Comparative Study of Hemicelluloses Obtained by Graded Ethanol Precipitation from Sugarcane Bagasse. J. Agric. Food Chem. 2009, 57, 6305–6317. [Google Scholar] [CrossRef]
- Mobarak, F.; Fahmy, Y.; Augustin, H. Binderless Lignocellulose Composite from Bagasse and Mechanism of Self-Bonding. Mater. Eng. 1982, 36, 131–136. [Google Scholar] [CrossRef]
- Widyorini, R.; Xu, J.; Umemura, K.; Kawai, S. Manufacture and Properties of Binderless Particleboard from Bagasse I: Effects of Raw Material Type, Storage Methods, and Manufacturing Process. J. Wood Sci. 2005, 51, 648–654. [Google Scholar] [CrossRef]
- Milagres, E.G.; Barbosa, R.A.G.S.; Caiafa, K.F.; Gomes, G.S.L.; Castro, T.A.C.; Vital, B.R. Properties of Particleboard Panels Made of Sugarcane Particles with and without Heat Treatment. Rev. Árvore 2019, 43, e430502. [Google Scholar] [CrossRef]
- Kusumah, S.S.; Umemura, K.; Guswenrivo, I.; Yoshimura, T.; Kanayama, K. Utilization of Sweet Sorghum Bagasse and Citric Acid for Manufacturing of Particleboard II: Influences of Pressing Temperature and Time on Particleboard Properties. J. Wood Sci. 2017, 63, 161–172. [Google Scholar] [CrossRef]
- Nikvash, N.; Kraft, R.; Kharazipour, A.; Euring, M. Comparative Properties of Bagasse, Canola and Hemp Particle Boards. Eur. J. Wood Wood Prod. 2010, 68, 323–327. [Google Scholar] [CrossRef]
- EN 312-6:2010; Particleboards—Specifications—Part 6: Heavy-Duty Load-Bearing Boards for Use in Humid Conditions. BSI Standards Limited: London, UK, 2010.
- Schopper, C.; Kharazipour, A.; Bohn, C. Production of Innovative Hemp Based Three-Layered Particleboards with Reduced Raw Densities and Low Formaldehyde Emissions. Int. J. Mater. Prod. Technol. 2009, 36, 358–371. [Google Scholar] [CrossRef]
- Adam, A.-B.A.; Basta, A.H.; El-Saied, H. Evaluation of Palm Fiber Components an Alternative Biomass Wastes for Medium Density Fiberboard Manufacturing. Maderas. Cienc. Y Tecnol. 2018, 20, 579–594. [Google Scholar] [CrossRef]
- Moulana, R. Utilization of Hemp (Cannabis sativa L.) as an Alternative Raw Material for the Production of Three-Layered Particleboard. In Proceedings of the Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, Banda Aceh, Indonesia, 22–24 November 2012; Volume 2. [Google Scholar]
- Saad, M.J.; Kamal, I. Mechanical and Physical Properties of Low Density Kenaf Core Particleboards Bonded with Different Resins. J. Sci. Technol. 2012, 4, 17–32. [Google Scholar]
- Yu, H.-X.; Fang, C.-R.; Xu, M.-P.; Guo, F.-Y.; Yu, W.-J. Effects of Density and Resin Content on the Physical and Mechanical Properties of Scrimber Manufactured from Mulberry Branches. J. Wood Sci. 2014, 61, 159–164. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Di Bella, G.; Fiore, V.; Galtieri, G.; Borsellino, C.; Valenza, A. Effects of Natural Fibres Reinforcement in Lime Plasters (Kenaf and Sisal vs. Polypropylene). Constr. Build. Mater. 2014, 58, 159–165. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
- Nogueira, N.D.; Narciso, C.R.P.; Felix, A.d.L.; Mendes, R.F. Pressing Temperature Effect on the Properties of Medium Density Particleboard Made with Sugarcane Bagasse and Plastic Bags. Mater. Res. 2022, 25, e20210491. [Google Scholar] [CrossRef]
- Bartos, A.; Anggono, J.; Farkas, Á.E.; Kun, D.; Soetaredjo, F.E.; Móczó, J.; Purwaningsih, H.; Pukánszky, B. Alkali Treatment of Lignocellulosic Fibers Extracted from Sugarcane Bagasse: Composition, Structure, Properties. Polym. Test. 2020, 88, 106549. [Google Scholar] [CrossRef]
- Suckley, S.; Deenuch, P.; Disjareon, N.; Phongtamrug, S. Effects of Alkali Treatment and Fiber Content on the Properties of Bagasse Fiber-Reinforced Epoxy Composites. Key Eng. Mater. 2017, 757, 40–45. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Gomes, A.S.; Paiva, F.F.G.; Tolosa, G.R.; Paim, L.L.; Dognani, G.; Cardim, G.P.; Cardim, H.P.; dos Santos, R.J.; Cabrera, F.C. Sugarcane Bagasse: Challenges and Opportunities for Waste Recycling. Clean Technol. 2024, 6, 662–699. [Google Scholar] [CrossRef]
- de Barros Filho, R.M.; Mendes, L.M.; Novack, K.M.; Aprelini, L.O.; Botaro, V.R. Hybrid Chipboard Panels Based on Sugarcane Bagasse, Urea Formaldehyde and Melamine Formaldehyde Resin. Ind. Crops Prod. 2011, 33, 369–373. [Google Scholar] [CrossRef]
- Nosbi, N.; Akil, H.M.; Ishak, Z.A.M.; Bakar, A.A. Behavior of Kenaf Fibers after Immersion in Several Water Conditions. BioResources 2011, 6, 950–960. [Google Scholar] [CrossRef]
- Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–Carbohydrate Complexes: Properties, Applications, Analyses, and Methods of Extraction: A Review. Biotechnol. Biofuels 2018, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Alwadani, N.; Ghavidel, N.; Fatehi, P. Surface and Interface Characteristics of Hydrophobic Lignin Derivatives in Solvents and Films. Colloids Surf. A Physicochem. Eng. Asp. 2021, 609, 125656. [Google Scholar] [CrossRef]
Fibers | Length Mean Value [µm] | Thickness Mean Value [µm] | Aspect Ratio |
---|---|---|---|
Kenaf | 1281.25 ± 17.1 * | 104.42 ± 0.8 * | 12.27 |
Bagasse | 1175.29 ± 10.5 * | 197.36 ± 1.5 * | 5.96 |
Softwood | 1638.13 ± 8.4 * | 272.43 ± 2.3 * | 6.01 |
Hemp | 588.06 ± 3.2 * | 103.95 ± 0.28 * | 5.66 |
Bond-Functional Group | Wavenumber, cm−1 | Intensities | ||||
---|---|---|---|---|---|---|
Initial pH | pH 11 | pH 13 | Initial pH | pH 11 | pH 13 | |
O–H Free hydroxyl-stretching | 3337.21 | 3319.85 | 3315.03 | 100 | 61.64 | 82.19 |
C–H stretching | 2843.52 | 2914 | 2848 | 63.04 | 52.05 | 68.50 |
C=O stretching | 1737.55 | 1728.87 | 1737.55 | Disappeared | ||
C–O–C and C–O stretching | 1254.47 | 1246 | 1153.22 | 27.40 | 13.70 | 22.60 |
Bond-Functional Group | Wavenumber, cm−1 | Intensities | ||||
---|---|---|---|---|---|---|
Initial pH | pH 11 | pH 13 | Initial pH | pH 11 | pH 13 | |
O–H Free hydroxyl-stretching | 3297.67 | 3315.95 | 3296.71 | 95.71 | 100 | 90.71 |
C–H stretching | 2830.92 | 2838.70 | 2835.81 | 72.14 | 73.57 | 71.43 |
C=O stretching | 1725.97 | 1725.01 | 1727.90 | Disappeared | ||
C–O–C and C–O stretching | 1244.82 | 1234.75 | 1313.25 | 27.14 | 32.90 | 21.43 |
Bond-Functional Group | Wavenumber, cm−1 | Intensities | ||||
---|---|---|---|---|---|---|
Initial pH | pH 11 | pH 13 | Initial pH | pH 11 | pH 13 | |
O–H Free hydroxyl-stretching | 3309.25 | 3283.21 | 3304.42 | 100 | 73.61 | 73.61 |
C–H stretching | 2849.31 | 2914.87 | 2826.16 | 59.72 | 65.97 | 63.19 |
C=O stretching | 1717.29 | 1722.12 | 1726.92 | Disappeared | ||
C–O–C and C–O stretching | 1318.14 | 1315.21 | 1316.17 | 30.55 | 36.11 | 62.50 |
Fibers | Mean Density (kg/m3) Values | Standard Deviation (SD) |
---|---|---|
Kenaf | 671.20 | 5.9 |
Bagasse | 662.40 | 5.4 |
Hemp | 604.70 | 5.3 |
Wood | 691.40 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, Z.; Senhaji, Y.; Elamin, M.; Rogaume, Y.; Pizzi, A.; Charrier-El Bouhtoury, F.; Charrier, B. Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis. Fibers 2025, 13, 121. https://doi.org/10.3390/fib13090121
Osman Z, Senhaji Y, Elamin M, Rogaume Y, Pizzi A, Charrier-El Bouhtoury F, Charrier B. Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis. Fibers. 2025; 13(9):121. https://doi.org/10.3390/fib13090121
Chicago/Turabian StyleOsman, Z., Y. Senhaji, Mohammed Elamin, Yann Rogaume, Antonio Pizzi, Fatima Charrier-El Bouhtoury, and Bertrand Charrier. 2025. "Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis" Fibers 13, no. 9: 121. https://doi.org/10.3390/fib13090121
APA StyleOsman, Z., Senhaji, Y., Elamin, M., Rogaume, Y., Pizzi, A., Charrier-El Bouhtoury, F., & Charrier, B. (2025). Development of High-Performance Biocomposites from Kenaf, Bagasse, Hemp, and Softwood: Effects of Fiber pH Modification and Adhesive Selection on Structural Properties Correlated with FTIR Analysis. Fibers, 13(9), 121. https://doi.org/10.3390/fib13090121