Recent Developments in Micro-Structured Fiber Optic Sensors
Abstract
:1. Introduction
2. Fundamental Physics of Micro-Structured Fiber Optic Sensors
2.1. Interferometer-Type Micro-Structured Fiber Optic Sensors
2.2. Grating-Type Micro-Structured Fiber Optic Sensors
3. Short Taper
4. Long Taper
4.1. Long Taper Profile and Fabrication Methods
4.2. Adiabatic Long Taper
4.3. Non-Adiabatic Long Taper
4.4. Non-Adiabatic Long Taper Based on Different Optical Fibers
5. Resonator-Type Microstructures
5.1. Microfiber Loops
5.2. Microfiber Knots
5.3. Microfiber Coils
6. Micro-Machined Devices
6.1. Laser Micro-Machined Devices
6.2. Chemically Etched Devices
6.3. Focused Ion Beam (FIB) Micro-Machined Devices
6.4. Other Methods Based Micro-Machined Devices
7. Grating-Based Microstructures
7.1. Microfiber-Based Fiber Bragg Grating
7.2. Microfiber-Based Long-Period Fiber Grating
7.3. Random Fiber Gratings
8. Mode-Mismatched and Hybrid Micro-Structured Devices
8.1. Mode Mismatched Micro-Structured Devices
8.2. Hybrid Micro-Structured Devices
9. Future Prospects
10. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mescia, L.; Prudenzano, F. Advances on optical fiber sensors. Fibers 2013, 2, 1–23. [Google Scholar] [CrossRef]
- Giallorenzi, T.G.; Bucaro, J.A.; Dandridge, A.; Sigel, G.; Cole, J.H.; Rashleigh, S.C.; Priest, R.G. Optical fiber sensor technology. IEEE Trans. Microw. Theory Tech. 1982, 30, 472–511. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Grattan, K.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Kersey, A.D. A review of recent developments in fiber optic sensor technology. Opt. Fiber Technol. 1996, 2, 291–317. [Google Scholar] [CrossRef]
- Rao, Y.-J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355. [Google Scholar] [CrossRef]
- Kersey, A.; Jackson, D.; Corke, M. A simple fibre Fabry-Perot sensor. Opt. Commun. 1983, 45, 71–74. [Google Scholar] [CrossRef]
- Rao, Y.-J. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Kao, T.; Taylor, H. High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor. Opt. Lett. 1996, 21, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric fiber optic sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Multi-Parameter Sensing Based on in-Line Mach-Zehnder Interferometer. Master’s Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2013. [Google Scholar]
- Jha, R.; Villatoro, J.; Badenes, G.; Pruneri, V. Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 2009, 34, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Allsop, T.; Reeves, R.; Webb, D.J.; Bennion, I.; Neal, R. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev. Sci. Instrum. 2002, 73, 1702–1705. [Google Scholar] [CrossRef]
- Rao, Y.-J.; Ran, Z.-L. Optic fiber sensors fabricated by laser-micromachining. Opt. Fiber Technol. 2013, 19, 808–821. [Google Scholar] [CrossRef]
- Machavaram, V.; Badcock, R.; Fernando, G. Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching. Sens. Actuators A Phys. 2007, 138, 248–260. [Google Scholar] [CrossRef]
- Brambilla, G. Optical fibre nanowires and microwires: A review. J. Opt. 2010, 12, 043001. [Google Scholar] [CrossRef]
- Tong, L.; Zi, F.; Guo, X.; Lou, J. Optical microfibers and nanofibers: A tutorial. Opt. Commun. 2012, 285, 4641–4647. [Google Scholar] [CrossRef]
- Brambilla, G.; Xu, F.; Horak, P.; Jung, Y.; Koizumi, F.; Sessions, N.P.; Koukharenko, E.; Feng, X.; Murugan, G.S.; Wilkinson, J.S. Optical fiber nanowires and microwires: Fabrication and applications. Adv. Opt. Photonics 2009, 1, 107–161. [Google Scholar] [CrossRef]
- Amnon, Y.; Yeh, P. Optical Electronics in Modern Communications, 5th ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Tsao, C. Optical Fibre Waveguide Analysis, 1st ed.; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Fielding, A.J.; Edinger, K.; Davis, C.C. Experimental observation of mode evolution in single-mode tapered optical fibers. J. Lightwave Technol. 1999, 17, 1649–1656. [Google Scholar] [CrossRef]
- Black, R.; Bourbonnais, R. Core-mode cutoff for finite-cladding lightguides. IEE Proc. J 1986, 133, 377–384. [Google Scholar] [CrossRef]
- Kou, J.-L.; Ding, M.; Feng, J.; Lu, Y.-Q.; Xu, F.; Brambilla, G. Microfiber-based Bragg gratings for sensing applications: A review. Sensors 2012, 12, 8861–8876. [Google Scholar] [CrossRef] [PubMed]
- Love, J.; Henry, W.; Stewart, W.; Black, R.; Lacroix, S.; Gonthier, F. Tapered single-mode fibres and devices. I. Adiabaticity criteria. IEE Proc. J. 1991, 138, 343–354. [Google Scholar]
- Little, B.E.; Laine, J.-P.; Haus, H.A. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol. 1999, 17, 704. [Google Scholar] [CrossRef]
- He, Y.; Shi, F.G. A graded-index fiber taper design for laser diode to single-mode fiber coupling. Opt. Commun. 2006, 260, 127–130. [Google Scholar] [CrossRef]
- Corres, J.M.; Arregui, F.J.; Matias, I.R. Design of humidity sensors based on tapered optical fibers. J. Lightwave Technol. 2006, 24, 4329–4336. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, C.-L.; Gong, H.; Li, Y.; Jin, S. Curvature sensor based on two cascading abrupt-tapers modal interferometer in single mode fiber. Opt. Commun. 2014, 333, 11–15. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, L.; Wang, S.; Li, B.; Lu, Y. High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber. Appl. Opt. 2013, 52, 2038–2041. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Jiang, L.; Wang, S.; Zhou, L.; Xiao, H.; Tsai, H.-L. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors. Sensors 2011, 11, 5729–5739. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.-H. In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor. IEEE Photonics Technol. Lett. 2009, 3, 161–163. [Google Scholar] [CrossRef]
- Monzon-Hernandez, D.; Martinez-Rios, A.; Torres-Gomez, I.; Salceda-Delgado, G. Compact optical fiber curvature sensor based on concatenating two tapers. Opt. Lett. 2011, 36, 4380–4382. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Lin, G.; Wang, X.; Chen, L.; Bao, X. Lateral stress detection using a tapered fiber Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 2012, 24, 2038–2041. [Google Scholar]
- Hsu, J.-M.; Lee, C.-L.; Chang, H.-P.; Shih, W.C.; Li, C.-M. Highly sensitive tapered fiber Mach-Zehnder interferometer for liquid level sensing. IEEE Photonics Technol. Lett. 2013, 25, 1354–1357. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Guo, M.; Zhao, Y. Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology. Sens. Actuators B Chem. 2016, 222, 159–165. [Google Scholar] [CrossRef]
- Li, Y.; Harris, E.; Chen, L.; Bao, X. Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor. Opt. Express 2010, 18, 8135–8143. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Li, Y.; Chen, L.; Bao, X. Fiber-optic Mach-Zehnder interferometer as a high-precision temperature sensor: Effects of temperature fluctuations on surface biosensing. Appl. Opt. 2010, 49, 5682–5685. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Harris, E.; Bao, X. Double-pass in-line fiber taper Mach-Zehnder interferometer sensor. IEEE Photonics Technol. Lett. 2010, 22, 1750–1752. [Google Scholar] [CrossRef]
- Lee, C.-L.; Shih, W.-C.; Hsu, J.-M.; Horng, J.-S. Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor. Opt. Express 2014, 22, 24646–24654. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Chen, R.; Lu, P.; Chen, Q.; Chen, K.P. Tapered fibre Mach-Zehnder interferometer for simultaneous measurement of liquid level and temperature. Electron. Lett. 2011, 47, 1093–1095. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.; Loock, H.-P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.; Frazão, O.; Santos, J.; Ribeiro, A.L. Fiber-optic inclinometer based on taper Michelson interferometer. IEEE Sens. J. 2011, 11, 1811–1814. [Google Scholar] [CrossRef]
- Lu, P.; Harris, J.; Xu, Y.; Lu, Y.; Chen, L.; Bao, X. Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer. Opt. Lett. 2012, 37, 4567–4569. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Lu, P.; Larocque, H.; Xu, Y.; Chen, L.; Bao, X. Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation. Opt. Express 2013, 21, 9996–10009. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Lu, P.; Larocque, H.; Chen, L.; Bao, X. In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes. Sens. Actuators B Chem. 2015, 206, 246–251. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, P.; Qin, Z.; Harris, J.; Baset, F.; Bhardwaj, V.R.; Bao, X. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Opt. Express 2013, 21, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.-K.; Hsieh, Y.-H.; Lee, Y.-K. Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications. Opt. Express 2013, 21, 11209–11214. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar]
- Gao, S.; Zhang, W.; Geng, P.; Xue, X.; Zhang, H.; Bai, Z. Highly sensitive in-fiber refractive index sensor based on down-bitaper seeded up-bitaper pair. IEEE Photonics Technol. Lett. 2012, 24, 1878–1881. [Google Scholar] [CrossRef]
- Song, H.; Gong, H.; Ni, K.; Dong, X. All fiber curvature sensor based on modal interferometer with waist enlarge splicing. Sens. Actuators A Phys. 2013, 203, 103–106. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Geng, P.; Gao, S. Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications. Opt. Commun. 2013, 288, 47–51. [Google Scholar] [CrossRef]
- Wen, X.; Ning, T.; Li, C.; Kang, Z.; Li, J.; You, H.; Feng, T.; Zheng, J.; Jian, W. Liquid level measurement by applying the Mach-Zehnder interferometer based on up-tapers. Appl. Opt. 2014, 53, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Yang, X.; Ni, K.; Zhao, C.-L.; Dong, X. An optical fiber curvature sensor based on two peanut-shape structures modal interferometer. IEEE Photonics Technol. Lett. 2014, 26, 22–24. [Google Scholar] [CrossRef]
- Pu, S.; Dong, S. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints. IEEE Photonics J. 2014, 6, 1–6. [Google Scholar]
- Kang, Z.; Wen, X.; Li, C.; Sun, J.; Wang, J.; Jian, S. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement. Appl. Opt. 2014, 53, 2691–2695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, W.; Chen, L.; Yan, T.; Wang, L.; Wang, B.; Zhou, Q. A fiber bending vector sensor based on M-Z interferometer exploiting two hump-shaped tapers. IEEE Photonics Technol. Lett. 2015, 27, 1240–1243. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Miao, C.; Shen, Z.; Li, H.; Zhang, M. High-sensitivity all single-mode fiber curvature sensor based on bulge-taper structures modal interferometer. Opt. Commun. 2015, 336, 197–201. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y.-S.; Xue, Y.; Chen, C.; Chen, Q.-D.; Sun, H.-B. Single S-tapered fiber Mach-Zehnder interferometers. Opt. Lett. 2011, 36, 4482–4484. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yu, Y.-S.; Chen, C.; Xue, Y.; Zhang, X.-L.; Guo, J.-C.; Wang, C.; Zhu, F.; Zhang, B.-L.; Chen, Q.-D. S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain. J. Lightwave Technol. 2012, 30, 3126–3132. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Zhang, Y.; Xia, Y.; Zhao, L. Refractive index sensor based on S-tapered photonic crystal fiber. IEEE Photonics Technol. Lett. 2013, 25, 344–347. [Google Scholar] [CrossRef]
- Deng, M.; Liu, D.; Li, D. Magnetic field sensor based on asymmetric optical fiber taper and magnetic fluid. Sens. Actuators A Phys. 2014, 211, 55–59. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Gao, S.; Bai, Z.; Wang, L.; Liang, H.; Yan, T. Simultaneous force and temperature measurement using S fiber taper in fiber Bragg grating. IEEE Photonics Technol. Lett. 2014, 26, 309–312. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, T.; Deng, M.; Duan, D.-W.; Shi, L.-L.; Yao, J.; Rao, Y.-J. Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers. Appl. Opt. 2011, 50, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jiang, L.; Wang, S.; Li, B.; Wang, M.; Xiao, H.; Lu, Y.; Tsai, H. High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing. Appl. Opt. 2011, 50, 5503–5507. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-C.; Yu, Y.-S.; Zhang, X.-Y.; Chen, C.; Liang, J.-F.; Liu, Z.-J.; Meng, A.-H.; Jing, S.-M.; Sun, H.-B. Compact Mach-Zehnder Interferometer Based on Tapered Hollow Optical Fiber. IEEE Photonics Technol. Lett. 2015, 27, 1277–1280. [Google Scholar] [CrossRef]
- Latifi, H.; Zibaii, M.I.; Hosseini, S.M.; Jorge, P. Nonadiabatic tapered optical fiber for biosensor applications. Photonics Sens. 2012, 2, 340–356. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J. Optical Waveguide Theory, 1st ed.; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar]
- Tiefenthaler, K.; Lukosz, W. Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 1989, 6, 209–220. [Google Scholar] [CrossRef]
- Love, J.; Henry, W. Quantifying loss minimisation in single-mode fibre tapers. Electron. Lett. 1986, 17, 912–914. [Google Scholar] [CrossRef]
- Birks, T.A.; Li, Y.W. The shape of fiber tapers. J. Lightwave Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Yadav, T.; Narayanaswamy, R.; Bakar, M.A.; Kamil, Y.M.; Mahdi, M. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 2014, 22, 22802–22807. [Google Scholar] [CrossRef] [PubMed]
- Zibaii, M.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S.; Ghezelayagh, M. Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution. Meas. Sci. Technol. 2010, 21, 105801. [Google Scholar] [CrossRef]
- Brambilla, G.; Finazzi, V.; Richardson, D. Ultra-low-loss optical fiber nanotapers. Opt. Express 2004, 12, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Characterization of Fiber Tapers for Fiber Devices and Sensors. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2012. [Google Scholar]
- Sumetsky, M.; Dulashko, Y.; Hale, A. Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Opt. Express 2004, 12, 3521–3531. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, X.; Liu, H.; Chen, Y.; Ye, Z.; Liao, W.; Xia, Y. Fabrication of submicron-diameter silica fibers using electric strip heater. Opt. Express 2006, 14, 5055–5060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.J.; Sacher, W.D.; Poon, J.K. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Opt. Express 2010, 18, 22593–22598. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Leon-Saval, S.; Witkowska, A.; Wadsworth, W.; Birks, T. Wavelength-independent all-fiber mode converters. Opt. Lett. 2007, 32, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Yerolatsitis, S.; Gris-Sánchez, I.; Birks, T. Adiabatically-tapered fiber mode multiplexers. Opt. Express 2014, 22, 608–617. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Oveys, H.; Fan, X. Liquid-core optical ring-resonator sensors. Opt. Lett. 2006, 31, 1319–1321. [Google Scholar] [CrossRef] [PubMed]
- Armani, A.M.; Vahala, K.J. Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 2006, 31, 1896–1898. [Google Scholar] [CrossRef] [PubMed]
- Keng, D.; McAnanama, S.; Teraoka, I.; Arnold, S. Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Appl. Phys. Lett. 2007, 91, 103902. [Google Scholar] [CrossRef]
- Socorro, A.B.; Del Villar, I.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film. IEEE Sens. J. 2012, 12, 2598–2603. [Google Scholar] [CrossRef]
- Díaz-Herrera, N.; Navarrete, M.; Esteban, O.; González-Cano, A. A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Meas. Sci. Technol. 2003, 15, 353. [Google Scholar] [CrossRef]
- Esteban, Ó.; Díaz-Herrera, N.; Navarrete, M.-C.; González-Cano, A. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Appl. Opt. 2006, 45, 7294–7298. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Herrera, N.; González-Cano, A.; Viegas, D.; Santos, J.L.; Navarrete, M.-C. Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region. Sens. Actuators B Chem. 2010, 146, 195–198. [Google Scholar] [CrossRef]
- Lee, C.-L. Spectral analysis of waveguide tapered microfiber with an ultrathin metal coating. Opt. Express 2010, 18, 14768–14777. [Google Scholar] [CrossRef] [PubMed]
- Herrera, N.D.; Esteban, Ó.; Navarrete, M.-C.; González-Cano, A.; Benito-Peña, E.; Orellana, G. Improved performance of SPR sensors by a chemical etching of tapered optical fibers. Opt. Lasers Eng. 2011, 49, 1065–1068. [Google Scholar] [CrossRef]
- Kakarantzas, G.; Leon-Saval, S.; Birks, T.; Russell, P.S.J. Low-loss deposition of solgel-derived silica films on tapered fibers. Opt. Lett. 2004, 29, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Ab Razak, M.Z.; Reduan, S.A.; Sharbirin, A.S.; Jamaludin, N.; Zulkifli, M.Z.; Ahmad, H. Noncontact Optical Displacement Sensor Using an Adiabatic U-Shaped Tapered Fiber. IEEE Sens. J. 2015, 15, 5388–5392. [Google Scholar] [CrossRef]
- Kieu, K.Q.; Mansuripur, M. Biconical fiber taper sensors. IEEE Photonics Technol. Lett. 2006, 18, 2239. [Google Scholar] [CrossRef]
- Arregui, F.J.; Matı́as, I.R.; López-Amo, M. Optical fiber strain gauge based on a tapered single-mode fiber. Sens. Actuators A Phys. 2000, 79, 90–96. [Google Scholar] [CrossRef]
- Mas, S.; Martí, J.; Monzón-Hernández, D.; Palací, J. Low-cost refractive index and strain sensor based on tapered fibers. Opt. Commun. 2016, 361, 99–103. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Li, B. Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing. Appl. Phys. Lett. 2012, 101, 153510. [Google Scholar] [CrossRef]
- Ji, W.B.; Tan, Y.C.; Lin, B.; Tjin, S.C.; Chow, K.K. Nonadiabatically Tapered Microfiber Sensor with Ultrashort Waist. IEEE Photonics Technol. Lett. 2014, 26, 2303–2306. [Google Scholar] [CrossRef]
- Muhammad, M.; Jasim, A.; Ahmad, H.; Arof, H.; Harun, S. Non-adiabatic silica microfiber for strain and temperature sensors. Sens. Actuators A Phys. 2013, 192, 130–132. [Google Scholar] [CrossRef]
- Layeghi, A.; Latifi, H.; Frazao, O. Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid. IEEE Photonics Technol. Lett. 2014, 26, 1904–1907. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, X.; Chan, C.C.; Shum, P.P.; Su, H. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer. Opt. Commun. 2015, 336, 5–8. [Google Scholar] [CrossRef]
- Liu, Z.J.; Yu, Y.S.; Zhang, X.Y.; Chen, C.; Zhu, C.C.; Meng, A.H.; Jing, S.M.; Sun, H.B. An optical microfiber taper magnetic field sensor with temperature compensation. IEEE Sens. J. 2015, 15, 4853–4856. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, L.; Sun, L.; Li, J.; Ran, Y.; Guan, B.-O. Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Bao, X. Sensitive acoustic vibration sensor using single-mode fiber tapers. Appl. Opt. 2011, 50, 1873–1878. [Google Scholar]
- Lu, P.; Harris, J.; Wang, X.; Lin, G.; Chen, L.; Bao, X. Tapered-fiber-based refractive index sensor at an air/solution interface. Appl. Opt. 2012, 51, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Chen, L.; Bao, X. Thermal and mechanical properties of tapered single mode fiber measured by OFDR and its application for high-sensitivity force measurement. Opt. Express 2012, 20, 14779–14788. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Song, J.; Niedermayer, G.; Harris, J.; Chen, L.; Bao, X. Tapered polarization-maintaining fiber sensor based on analysis of polarization evolution. In Proceedings of the SPIE 9157, OFS2014 23rd International Conference on Optical Fiber Sensors, Santander, Spain, 2–6 June 2014.
- Kumar, A.; Subrahmanyam, T.; Sharma, A.; Thyagarajan, K.; Pal, B.; Goyal, I. Novel refractometer using a tapered optical fibre. Electron. Lett. 1984, 13, 534–535. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzón-Hernández, D.; Talavera, D. High resolution refractive index sensing with cladded multimode tapered optical fibre. Electron. Lett 2004, 40, 106–107. [Google Scholar] [CrossRef]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Opt. Lett. 2011, 36, 2233–2235. [Google Scholar] [CrossRef] [PubMed]
- Biazoli, C.R.; Silva, S.; Franco, M.A.; Frazão, O.; Cordeiro, C.M. Multimode interference tapered fiber refractive index sensors. Appl. Opt. 2012, 51, 5941–5945. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Sun, Q.; Xu, Z.; Liu, D.; Zhang, L. Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer. Opt. Lett. 2014, 39, 4049–4052. [Google Scholar] [CrossRef] [PubMed]
- Mägi, E.; Steinvurzel, P.; Eggleton, B. Tapered photonic crystal fibers. Opt. Express 2004, 12, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.C.; Kuhlmey, B.T.; Mägi, E.C.; Steel, M.J.; Domachuk, P.; Smith, C.L.; Eggleton, B.J. Tapered photonic crystal fibres: Properties, characterisation and applications. Appl. Phys. B 2005, 81, 377–387. [Google Scholar] [CrossRef]
- Minkovich, V.; Villatoro, J.; Monzón-Hernández, D.; Calixto, S.; Sotsky, A.; Sotskaya, L. Holey fiber tapers with resonance transmission for high-resolution refractive index sensing. Opt. Express 2005, 13, 7609–7614. [Google Scholar] [CrossRef] [PubMed]
- Villatoro, J.; Minkovich, V.P.; Monzón-Hernández, D. Compact modal interferometer built with tapered microstructured optical fiber. IEEE Photonics Technol. Lett. 2006, 18, 1258–1260. [Google Scholar] [CrossRef]
- Villatoro, J.; Finazzi, V.; Badenes, G.; Pruneri, V. Highly sensitive sensors based on photonic crystal fiber modal interferometers. J. Sens. 2009, 2009, 747803. [Google Scholar] [CrossRef]
- Pinto, A.M.; Lopez-Amo, M. Photonic crystal fibers for sensing applications. J. Sens. 2012, 2012, 598178. [Google Scholar] [CrossRef]
- Monzón-Hernández, D.; Minkovich, V.P.; Villatoro, J. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photonics Technol. Lett. 2006, 18, 511–513. [Google Scholar] [CrossRef]
- Villatoro, J.; Minkovich, V.P.; Monzón-Hernández, D. Temperature-independent strain sensor made from tapered holey optical fiber. Opt. Lett. 2006, 31, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-J.; Chen, Y.; Kou, J.-L.; Xu, F.; Lu, Y.-Q. Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching. Appl. Opt. 2011, 50, 4328–4332. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Li, T.; Hu, L.; Qian, W.; Zhang, Q.; Jin, S. Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer. Opt. Commun. 2012, 285, 5148–5150. [Google Scholar] [CrossRef]
- Ni, K.; Chan, C.C.; Dong, X.; Poh, C.; Li, T. Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer. Opt. Commun. 2013, 291, 238–241. [Google Scholar] [CrossRef]
- Li, C.; Qiu, S.-J.; Chen, Y.; Xu, F.; Lu, Y.-Q. Ultra-sensitive refractive index sensor with slightly tapered photonic crystal fiber. IEEE Photonics Technol. Lett. 2012, 24, 1771. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, D.; Lv, R.-Q. Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 2015, 27, 26–29. [Google Scholar] [CrossRef]
- Wu, Q.; Semenova, Y.; Wang, P.; Farrell, G. A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)-SMF28 fiber structure. J. Opt. 2011, 13, 125401. [Google Scholar] [CrossRef]
- Liu, D.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Opt. Lett. 2015, 40, 4166–4169. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tong, L. Optical microfibers and nanofibers. Nanophotonics 2013, 2, 407–428. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Fini, J.; Hale, A.; DiGiovanni, D. The microfiber loop resonator: Theory, experiment, and application. J. Lightwave Technol. 2006, 24, 242. [Google Scholar] [CrossRef]
- Jung, Y.; Murugan, G.S.; Brambilla, G.; Richardson, D.J. Embedded Optical Microfiber Coil Resonator with Enhanced High. IEEE Photonics Technol. Lett. 2010, 22, 1638–1640. [Google Scholar]
- Bueno, F.-J.; Esteban, O.; Díaz-Herrera, N.; Navarrete, M.-C.; González-Cano, A. Sensing properties of asymmetric double-layer-covered tapered fibers. Appl. Opt. 2004, 43, 1615–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspar, C.; Bachus, E.-J. Fibre-optic micro-ring-resonator with 2 mm diameter. Electron. Lett. 1989, 25, 1506–1508. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Fini, J.M.; Hale, A. Optical microfiber loop resonator. Appl. Phys. Lett. 2005, 86, 161108. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Jiang, X.; Tong, L. Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Appl. Phys. Lett. 2007, 91, 073512. [Google Scholar] [CrossRef]
- Guo, X.; Tong, L. Supported microfiber loops for optical sensing. Opt. Express 2008, 16, 14429–14434. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Knox, W.H. Fabrication and characterization of fused microfiber resonators. IEEE Photonics Technol. Lett. 2009, 12, 766–768. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, L.; Yang, Z.; Gu, F.; Wang, S.; Yang, Q.; Tong, L. Fusion spliced microfiber closed-loop resonators. IEEE Photonics Technol. Lett. 2010, 15, 1075–1077. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, G.; Tong, L. Modeling optical microfiber loops for seawater sensing. Appl. Opt. 2012, 51, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Dong, X.; Zhao, C.; Li, Y.; Shao, L.; Jin, S. Relative humidity sensor based on microfiber loop resonator. Adv. Mater. Sci. Eng. 2013, 2013, 815930. [Google Scholar] [CrossRef]
- Yoon, M.-S.; Kim, S.K.; Han, Y.-G. Highly sensitive current sensor based on an optical microfiber loop resonator incorporating low index polymer overlay. J. Lightwave Technol. 2015, 33, 2386–2391. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Li, B. Optical characterization of mechanically tunable microwire based resonators by changing ring radius and wire diameter. Opt. Commun. 2011, 284, 3276–3279. [Google Scholar] [CrossRef]
- Chen, Z.; Hsiao, V.K.; Li, X.; Li, Z.; Yu, J.; Zhang, J. Optically tunable microfiber-knot resonator. Opt. Express 2011, 19, 14217–14222. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 2006, 88, 223501. [Google Scholar] [CrossRef]
- Vienne, G.; Li, Y.; Tong, L. Effect of host polymer on microfiber resonator. IEEE Photonics Technol. Lett. 2007, 19, 1386–1388. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, Y.; Hou, C.; Bai, J.; Yang, G. A temperature sensor based on optical microfiber knot resonator. Opt. Commun. 2009, 282, 3817–3819. [Google Scholar] [CrossRef]
- Wu, Y.; Rao, Y.-J.; Chen, Y.-H.; Gong, Y. Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Opt. Express 2009, 17, 18142–18147. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, T.; Rao, Y.; Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 2011, 155, 258–263. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. Investigation of the thermal properties of optical microfiber knot resonators. Instrum. Sci. Technol. 2013, 41, 224–235. [Google Scholar] [CrossRef]
- Lim, K.; Harun, S.; Damanhuri, S.; Jasim, A.; Tio, C.; Ahmad, H. Current sensor based on microfiber knot resonator. Sens. Actuators A Phys. 2011, 167, 60–62. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett. 2012, 37, 5187–5189. [Google Scholar] [CrossRef]
- Lim, K.-S.; Aryanfar, I.; Chong, W.-Y.; Cheong, Y.-K.; Harun, S.W.; Ahmad, H. Integrated microfibre device for refractive index and temperature sensing. Sensors 2012, 12, 11782–11789. [Google Scholar] [CrossRef]
- Li, X.; Ding, H. A stable evanescent field-based microfiber knot resonator refractive index sensor. IEEE Photonics Technol. Lett. 2014, 26, 1625–1628. [Google Scholar] [CrossRef]
- Gomes, A.D.; Frazão, O. Mach-Zehnder Based on Large Knot Fiber Resonator for Refractive Index Measurement. IEEE Photonics Technol. Lett. 2016, 28, 1279–1281. [Google Scholar] [CrossRef]
- Larocque, H.; Lu, P.; Bao, X. Phase-shift detection in a Fourier-transform method for temperature sensing using a tapered fiber microknot resonator. Opt. Lett. 2016, 41, 1344–1347. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Harun, S.; Ahmad, F.; Muhammad, M.Z.; Jasim, A.A.; Ahmad, H. Demonstration of microfiber hybrid Mach–Zehnder and knot resonator structure. Microw. Opt. Technol. Lett. 2013, 55, 100–102. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Tan, Y.; Shen, X.; Xie, X.; Gao, S.; Guan, B.-O. Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity. Opt. Express 2012, 20, 10180–10185. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jia, L.; Zhang, T.; Rao, Y.; Gong, Y. Microscopic multi-point temperature sensing based on microfiber double-knot resonators. Opt. Commun. 2012, 285, 2218–2222. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Q.; Li, B.; Luo, Y.; Lu, W.; Liu, D.; Shum, P.P.; Zhang, L. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect. Opt. Express 2015, 23, 6662–6672. [Google Scholar] [CrossRef] [PubMed]
- Shahal, S.; Klein, A.; Masri, G.; Fridman, M. Fused fiber micro-knots. Appl. Opt. 2016, 55, 4538–4541. [Google Scholar] [CrossRef] [PubMed]
- Sumetsky, M. Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators. J. Lightwave Technol. 2008, 26, 21–27. [Google Scholar] [CrossRef]
- Scheuer, J.; Sumetsky, M. Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing. Laser Photonics Rev. 2011, 5, 465–478. [Google Scholar] [CrossRef]
- Sumetsky, M. Optical fiber microcoil resonators. Opt. Express 2004, 12, 2303–2316. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Horak, P.; Brambilla, G. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. Appl. Opt. 2007, 46, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Brambilla, G.; Feng, J.; Lu, Y. Mathematical model for manufacturing microfiber coil resonators. Opt. Eng. 2010, 49, 044001. [Google Scholar]
- Xu, F.; Wang, Q.; Zhou, J.-F.; Hu, W.; Lu, Y.-Q. Dispersion study of optical nanowire microcoil resonators. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1102–1106. [Google Scholar] [CrossRef]
- Xu, F.; Brambilla, G. Manufacture of 3-D microfiber coil resonators. IEEE Photonics Technol. Lett. 2007, 19, 1481–1483. [Google Scholar] [CrossRef]
- Xu, F.; Brambilla, G. Embedding optical microfiber coil resonators in Teflon. Opt. Lett. 2007, 32, 2164–2166. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Horak, P.; Brambilla, G. Optical microfiber coil resonator refractometric sensor. Opt. Express 2007, 15, 7888–7893. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Brambilla, G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl. Phys. Lett. 2008, 92, 101126. [Google Scholar] [CrossRef]
- Scheuer, J. Fiber microcoil optical gyroscope. Opt. Lett. 2009, 34, 1630–1632. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, R.; Jung, Y.; Brambilla, G. In-line absorption sensor based on coiled optical microfiber. Appl. Phys. Lett. 2011, 98, 173504. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Peng, T.-S.; Wang, L.A. Millimeter-sized microfiber coil resonators with enhanced quality factors by increasing coil numbers. IEEE Photonics Technol. Lett. 2012, 24, 569–571. [Google Scholar]
- Chen, G.Y.; Brambilla, G.; Newson, T.P. Compact acoustic sensor based on air-backed mandrel coiled with optical microfiber. Opt. Lett. 2012, 37, 4720–4722. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Brambilla, G.; Newson, T. Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator. Electron. Lett. 2013, 49, 46–47. [Google Scholar] [CrossRef]
- Xie, X.; Li, J.; Sun, L.-P.; Shen, X.; Jin, L.; Guan, B.-O. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils. Sensors 2014, 14, 8423–8429. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.-L.; Chen, J.-H.; Chen, Y.; Xu, F.; Lu, Y.-Q. Platform for enhanced light–graphene interaction length and miniaturizing fiber stereo devices. Optica 2014, 1, 307–310. [Google Scholar] [CrossRef]
- Yan, S.-C.; Zheng, B.-C.; Chen, J.-H.; Xu, F.; Lu, Y.-Q. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Appl. Phys. Lett. 2015, 107, 053502. [Google Scholar] [CrossRef]
- Coelho, J.M.; Nespereira, M.; Silva, C.; Pereira, D.; Rebordão, J. Advances in Optical Fiber Laser Micromachining for Sensors Development. Curr. Dev. Opt. Fiber Technol. 2013, 375–401. [Google Scholar]
- Van Brakel, A.; Grivas, C.; Petrovich, M.N.; Richardson, D.J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 2007, 15, 8731–8736. [Google Scholar] [CrossRef] [PubMed]
- Konstantaki, M.; Childs, P.; Sozzi, M.; Pissadakis, S. Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers. Laser Photonics Rev. 2013, 7, 439–443. [Google Scholar] [CrossRef]
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Dubov, M.; Khrushchev, I.; Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 2004, 40, 1. [Google Scholar] [CrossRef]
- Streltsov, A.M.; Borrelli, N.F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 2001, 26, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Liao, C.; Wang, D.; Yang, M.; Lu, P. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photonics Technol. Lett. 2010, 22, 39–41. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Jiang, L.; Wang, S.; Wang, P.; Zhang, F.; Lu, Y. Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing. Appl. Opt. 2014, 53, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.-J.; Deng, M.; Duan, D.-W.; Yang, X.-C.; Zhu, T.; Cheng, G.-H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123–14128. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Han, Y.; Li, Y.; Tsai, H.-L.; Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 2008, 16, 5764–5769. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Han, Y.; Tsai, H.-L.; Xiao, H. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 2008, 33, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Yang, M.; Hong, W.; Lu, P. Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining. Opt. Lett. 2009, 34, 3328–3330. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Hu, T.; Wang, D. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813–22818. [Google Scholar]
- Liu, Y.; Qu, S.; Li, Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown. Opt. Lett. 2013, 38, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Rao, Y.; Deng, H.; Liao, X. Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. Opt. Lett. 2007, 32, 3071–3073. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.L.; Rao, Y.J.; Liu, W.J.; Liao, X.; Chiang, K.S. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 2008, 16, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Liu, Z.; Rao, Y.; Xu, F.; Sun, D.; Yu, X.; Xu, B.; Zhang, J. Miniature fiber-optic tip high pressure sensors micromachined by 157 nm laser. IEEE Sens. J. 2011, 11, 1103–1106. [Google Scholar] [CrossRef]
- Ran, Z.; Li, C.; Zuo, H.; Chen, Y. Laser-machined cascaded micro cavities for simultaneous measurement of dual parameters under high temperature. IEEE Sens. J. 2013, 13, 1988–1991. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Wei, P.-K. Sensitive liquid refractive index sensors using tapered optical fiber tips. Opt. Lett. 2010, 35, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Donlagic, D. All-fiber micromachined microcell. Opt. Lett. 2011, 36, 3148–3150. [Google Scholar] [CrossRef] [PubMed]
- Pevec, S.; Donlagic, D. Miniature micro-wire based optical fiber-field access device. Opt. Express 2012, 20, 27874–27887. [Google Scholar] [CrossRef] [PubMed]
- Pevec, S.; Donlagic, D. Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index. Opt. Lett. 2014, 39, 6221–6224. [Google Scholar] [CrossRef] [PubMed]
- Pevec, S.; Donlagic, D. Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature. Opt. Lett. 2015, 40, 5646–5649. [Google Scholar] [CrossRef] [PubMed]
- Tafulo, P.A.; Jorge, P.A.; Santos, J.L.; Araujo, F.M.; Frazao, O. Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement. IEEE Sens. J. 2012, 12, 8–12. [Google Scholar] [CrossRef]
- Erreira, M.S.; Bierlich, J.; Unger, S.; Schuster, K.; Santos, J.L.; Frazão, O. Post-processing of Fabry-Pérot microcavity tip sensor. IEEE Photonics Technol. Lett. 2013, 25, 1593–1596. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagic, D. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature. Opt. Express 2014, 22, 16241–16253. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yan, G.; Zhou, B.; Lee, E.-H.; He, S. Open-cavity fabry-perot interferometer based on etched side-hole fiber for microfluidic sensing. IEEE Photonics Technol. Lett. 2015, 27, 1813–1816. [Google Scholar]
- Lu, P.; Xu, Y.; Baset, F.; Bao, X.; Bhardwaj, R. In-line fiber microcantilever vibration sensor. Appl. Phys. Lett. 2013, 103, 211113. [Google Scholar] [CrossRef]
- André, R.M.; Warren-Smith, S.C.; Becker, M.; Dellith, J.; Rothhardt, M.; Zibaii, M.; Latifi, H.; Marques, M.B.; Bartelt, H.; Frazão, O. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips. Opt. Express 2016, 24, 14053–14065. [Google Scholar] [CrossRef]
- Kou, J.-L.; Feng, J.; Ye, L.; Xu, F.; Lu, Y.-Q. Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 2010, 18, 14245–14250. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.-L.; Feng, J.; Wang, Q.-J.; Xu, F.; Lu, Y.-Q. Microfiber-probe-based ultrasmall interferometric sensor. Opt. Lett. 2010, 35, 2308–2310. [Google Scholar] [CrossRef] [PubMed]
- André, R.M.; Pevec, S.; Becker, M.; Dellith, J.; Rothhardt, M.; Marques, M.B.; Donlagic, D.; Bartelt, H.; Frazão, O. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Opt. Express 2014, 22, 13102–13108. [Google Scholar] [CrossRef] [PubMed]
- Wieduwilt, T.; Dellith, J.; Talkenberg, F.; Bartelt, H.; Schmidt, M. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator. Opt. Express 2014, 22, 25333–25346. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shao, Y.; Yu, Y.; Zhang, Y.; Wei, S. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement. Sensors 2016, 16, 794. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919. [Google Scholar]
- Berthelot, J.; Aćimović, S.; Juan, M.; Kreuzer, M.; Renger, J.; Quidant, R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 2014, 9, 295–299. [Google Scholar] [CrossRef] [PubMed]
- El Eter, A.; Hameed, N.M.; Baida, F.I.; Salut, R.; Filiatre, C.; Nedeljkovic, D.; Atie, E.; Bole, S.; Grosjean, T. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. Opt. Express 2014, 22, 10072–10080. [Google Scholar] [CrossRef] [PubMed]
- Hameed, N.M.; El Eter, A.; Grosjean, T.; Baida, F.I. Stand-alone three-dimensional optical tweezers based on fibred Bowtie nanoaperture. IEEE Photonics J. 2014, 6, 1–10. [Google Scholar] [CrossRef]
- Atie, E.M.; Xie, Z.; El Eter, A.; Salut, R.; Nedeljkovic, D.; Tannous, T.; Baida, F.I.; Grosjean, T. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy. Appl. Phys. Lett. 2015, 106, 151104. [Google Scholar] [CrossRef]
- Gelfand, R.M.; Wheaton, S.; Gordon, R. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Opt. Lett. 2014, 39, 6415–6417. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Guo, Y.; Rao, Y.-J.; Zhao, T.; Wu, Y. Fiber-optic Fabry-Perot sensor based on periodic focusing effect of graded-index multimode fibers. IEEE Photonics Technol. Lett. 2010, 22, 1708–1710. [Google Scholar] [CrossRef]
- Wang, T.; Wang, M. Fabry-Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an In-Fiber Ellipsoidal Cavity. IEEE Photonics Technol. Lett. 2012, 24, 1733–1736. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Zhang, A.P.; Guan, B.-O.; Tam, H.-Y. In-line open-cavity Fabry–Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing. Opt. Express 2014, 22, 21757–21766. [Google Scholar] [CrossRef] [PubMed]
- Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Castillo-Guzman, A.; Rojas-Laguna, R.; Selvas-Aguilar, R.; Vargas-Rodriguez, E.; Sierra-Hernandez, J.; Guzman-Ramos, V.; Flores-Balderas, A. Highly sensitive curvature and displacement sensing setup based on an all fiber micro Fabry-Perot interferometer. Opt. Commun. 2013, 308, 289–292. [Google Scholar] [CrossRef]
- Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Sierra-Hernandez, J.; Perez-Maciel, M.; Avila-Garcia, M.; Vargas-Rodriguez, E.; Rojas-Laguna, R.; Estudillo-Ayala, J. Modified All-Fiber Fabry-Perot Interferometer and Its Refractive Index, Load, and Temperature Analyses. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Lee, C.-L.; Hsu, J.-M.; Horng, J.-S.; Sung, W.-Y.; Li, C.-M. Microcavity fiber Fabry–Pérot interferometer with an embedded golden thin film. IEEE Photonics Technol. Lett. 2013, 25, 833–836. [Google Scholar] [CrossRef]
- Gruca, G.; Chavan, D.; Rector, J.; Heeck, K.; Iannuzzi, D. Demonstration of an optically actuated ferrule-top device for pressure and humidity sensing. Sens. Actuators A Phys. 2013, 190, 77–83. [Google Scholar] [CrossRef]
- Williams, H.E.; Freppon, D.J.; Kuebler, S.M.; Rumpf, R.C.; Melino, M.A. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express 2011, 19, 22910–22922. [Google Scholar] [CrossRef] [PubMed]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 344–353. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005, 86, 151122. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.; Tjin, S.C.; Zhang, H.; Wang, G.; Shum, P.; Zhang, X. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express 2010, 18, 26345–26350. [Google Scholar]
- Ran, Y.; Tan, Y.-N.; Sun, L.-P.; Gao, S.; Li, J.; Jin, L.; Guan, B.-O. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express 2011, 19, 18577–18583. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Liu, Z.; Lu, C.; Tam, H.-Y. Highly sensitive compact force sensor based on microfiber Bragg grating. IEEE Photonics Technol. Lett. 2012, 24, 700–702. [Google Scholar] [CrossRef]
- Ran, Y.; Jin, L.; Tan, Y.-N.; Sun, L.-P.; Li, J.; Guan, B.-O. High-efficiency ultraviolet inscription of Bragg gratings in microfibers. IEEE Photonics J. 2012, 4, 181–186. [Google Scholar] [CrossRef]
- Ran, Y.; Jin, L.; Sun, L.-P.; Li, J.; Guan, B.-O. Temperature-compensated refractive-index sensing using a single Bragg grating in an abrupt fiber taper. IEEE Photonics J. 2013, 5, 7100208. [Google Scholar]
- Yu, Z.; Jin, L.; Chen, L.; Li, J.; Ran, Y.; Guan, B.-O. Microfiber Bragg grating hydrogen sensors. IEEE Photonics Technol. Lett. 2015, 27, 2575–2578. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Smelser, C.W.; Lu, P.; Walker, R.B.; Grobnic, D.; Ding, H.; Henderson, G.; Unruh, J. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett. 2003, 28, 995–997. [Google Scholar] [CrossRef]
- Grobnic, D.; Mihailov, S.J.; Ding, H.; Smelser, C.W. Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation. IEEE Photonics Technol. Lett. 2006, 18, 160–162. [Google Scholar] [CrossRef]
- Fang, X.; Liao, C.; Wang, D. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 2010, 35, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, Y.; Zhang, J.; Shi, L.; Zhang, X. Nanohole induced microfiber Bragg gratings. Opt. Express 2012, 20, 28625–28630. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahsani, V.; Saad, A.; Jun, M.B. Bragg Grating Embedded in Mach-Zehnder Interferometer for Refractive Index and Temperature Sensing. IEEE Photonics Technol. Lett. 2016, 28, 1968–1971. [Google Scholar] [CrossRef]
- Ahmed, F.; Jun, M.B. Microfiber Bragg Grating Sandwiched Between Standard Optical Fibers for Enhanced Temperature Sensing. IEEE Photonics Technol. Lett. 2016, 28, 685–688. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, C.; Zhang, A.P.; Xiao, Y.; Yu, H.; Tong, L. Compact microfiber Bragg gratings with high-index contrast. Opt. Lett. 2011, 36, 3115–3117. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.-L.; Qiu, S.-J.; Xu, F.; Lu, Y.-Q. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express 2011, 19, 18452–18457. [Google Scholar]
- Ding, M.; Zervas, M.N.; Brambilla, G. A compact broadband microfiber Bragg grating. Opt. Express 2011, 19, 15621–15626. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Rochette, M.; Baker, C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 2011, 36, 2886–2888. [Google Scholar] [CrossRef] [PubMed]
- Rajan, G.; Noor, M.Y.M.; Lovell, N.H.; Ambikaizrajah, E.; Farrell, G.; Peng, G.-D. Polymer micro-fiber Bragg grating. Opt. Lett. 2013, 38, 3359–3362. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Wu, Y.; Zhang, A.; Wang, F.; Rao, Y.; Gong, Y.; Zhang, W.; Wang, Z.; Chiang, K.; Sumetsky, M. Graphene Bragg gratings on microfiber. Opt. Express 2014, 22, 23829–23835. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, B.; Zhang, A.; Rao, Y.; Wang, Z.; Cheng, Y.; Gong, Y.; Zhang, W.; Chen, Y.; Chiang, K. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt. Lett. 2014, 39, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Allsop, T.; Floreani, F.; Jedrzejewski, K.; Marques, P.; Romero, R.; Webb, D.; Bennion, I. Refractive index sensing with long-period grating fabricated in biconical tapered fibre. Electron. Lett. 2005, 41, 1. [Google Scholar] [CrossRef]
- Allsop, T.; Floreani, F.; Jedrzejewski, K.; Marques, P.; Romero, R.; Webb, D.J.; Bennion, I. Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature. J. Lightwave Technol. 2006, 24, 870. [Google Scholar] [CrossRef]
- Xuan, H.; Jin, W.; Zhang, M. CO2 laser induced long period gratings in optical microfibers. Opt. Express 2009, 17, 21882–21890. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Jin, W.; Liu, S. Long-period gratings in wavelength-scale microfibers. Opt. Lett. 2010, 35, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-P.; Li, J.; Jin, L.; Guan, B.-O. Structural microfiber long-period gratings. Opt. Express 2012, 20, 18079–18084. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.B.; Tjin, S.C.; Lin, B.; Ng, C.L. Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings. Sensors 2013, 13, 14055–14063. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.-S.; Kim, H.-J.; Kim, S.-J.; Han, Y.-G. Influence of the waist diameters on transmission characteristics and strain sensitivity of microtapered long-period fiber gratings. Opt. Lett. 2013, 38, 2669–2672. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, L.-P.; Jin, L.; Li, J.; Guan, B.-O. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications. Opt. Express 2013, 21, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Yu, Y.-S.; Chen, C.; Zhu, C.-C.; Yang, R.; Liu, Z.-J.; Liang, J.-F.; Chen, Q.-D.; Sun, H.-B. Point-by-point dip coated long-period gratings in microfibers. IEEE Photonics Technol. Lett. 2014, 26, 2503–2506. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Wang, L. Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing. Photonics Res. 2016, 4, 45–48. [Google Scholar] [CrossRef]
- Derevyanko, S. Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index. Opt. Lett. 2008, 33, 2404–2406. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Gbadebo, A.; Turitsyna, E.G. Top-hat random fiber Bragg grating. Opt. Lett. 2015, 40, 3592–3594. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, P.; Gao, S.; Xiang, D.; Mihailov, S.; Bao, X. Optical fiber random grating-based multiparameter sensor. Opt. Lett. 2015, 40, 5514–5517. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gao, S.; Lu, P.; Mihailov, S.; Chen, L.; Bao, X. Low-noise Brillouin random fiber laser with a random grating-based resonator. Opt. Lett. 2016, 41, 3197–3200. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Varshney, R.K.; Sharma, P. Transmission characteristics of SMS fiber optic sensor structures. Opt. Commun. 2003, 219, 215–219. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Kumar, A.; Varshney, R.K.; Kumar, Y.B.P.; Marin, E.; Meunier, J.-P. Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J. Lightwave Technol. 2009, 27, 2348–2356. [Google Scholar] [CrossRef]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. Investigation of single-mode-multimode-single-mode and single-mode-tapered-multimode-single-mode fiber structures and their application for refractive index sensing. J. Opt. Soc. Am. B 2011, 28, 1180–1186. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Liao, C.; Liu, S.; Zhou, J.; Zhong, X.; Liu, Y.; Yang, K.; Wang, Q.; Yin, G. Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer. Sens. Actuators B Chem. 2014, 199, 31–35. [Google Scholar] [CrossRef]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef] [PubMed]
- Coviello, G.; Finazzi, V.; Villatoro, J.; Pruneri, V. Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °C. Opt. Express 2009, 17, 21551–21559. [Google Scholar]
- Xu, Y.; Lu, P.; Song, J.; Chen, L.; Bao, X.; Dong, X. Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination. Photonics Sens. 2015, 5, 224–234. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzón-Hernández, D. Low-cost optical fiber refractive-index sensor based on core diameter mismatch. J. Lightwave Technol. 2006, 24, 1409–1413. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Weng, Y.; Rong, Q.; Ma, Y.; Feng, Z.; Hu, M.; Qiao, X. Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer. IEEE Sens. J. 2013, 13, 1766–1770. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Zhang, Y.F.; Leong, K.C. Miniature single-mode fiber refractive index interferometer sensor based on high order cladding mode and core-offset. IEEE Photonics Technol. Lett. 2012, 24, 359–361. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, J.; Jia, Z. High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 2013, 25, 2354–2357. [Google Scholar] [CrossRef]
- Mao, L.; Lu, P.; Lao, Z.; Liu, D.; Zhang, J. Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing. Opt. Laser Technol. 2014, 57, 39–43. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Liao, C.; Sun, B.; He, J.; Yin, G.; Liu, S.; Li, Z.; Wang, G.; Zhong, X. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sens. Actuators B Chem. 2015, 208, 315–319. [Google Scholar] [CrossRef]
- Cui, W.; Si, J.; Chen, T.; Hou, X. Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper. Opt. Express 2015, 23, 11031–11036. [Google Scholar] [CrossRef] [PubMed]
- Frazão, O.; Falate, R.; Fabris, J.; Santos, J.; Ferreira, L.; Araújo, F. Optical inclinometer based on a single long-period fiber grating combined with a fused taper. Opt. Lett. 2006, 31, 2960–2962. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Chen, Q. Asymmetrical fiber Mach-Zehnder interferometer for simultaneous measurement of axial strain and temperature. IEEE Photonics J. 2010, 2, 942–953. [Google Scholar]
- Yin, G.; Lou, S.; Zou, H. Refractive index sensor with asymmetrical fiber Mach-Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section. Opt. Laser Technol. 2013, 45, 294–300. [Google Scholar] [CrossRef]
- Lu, P.; Chen, Q. Femtosecond laser microfabricated fiber Mach-Zehnder interferometer for sensing applications. Opt. Lett. 2011, 36, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.-G.; Cai, L. A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber. Sens. Actuators A Phys. 2015, 223, 119–124. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Gao, S.; Geng, P.; Xue, X. Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper. Opt. Lett. 2012, 37, 4480–4482. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Xiao, S.; Shi, J.; Yi, L.; Zhou, Z.; Bi, M.; Hu, W. Cladding-mode backward-recoupling-based displacement sensor incorporating fiber up taper and Bragg grating. IEEE Photonics J. 2013, 5, 7100608. [Google Scholar]
- Fan, J.; Zhang, J.; Lu, P.; Tian, M.; Xu, J.; Liu, D. A single-mode fiber sensor based on core-offset inter-modal interferometer. Opt. Commun. 2014, 320, 33–37. [Google Scholar]
- Sun, H.; Yang, S.; Zhang, X.; Yuan, L.; Yang, Z.; Hu, M. Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach-Zehnder interferometer. Opt. Commun. 2015, 340, 39–43. [Google Scholar] [CrossRef]
- Li, C.; Ning, T.; Zhang, C.; Wen, X.; Li, J.; Zhang, C. Liquid level and temperature sensor based on an asymmetrical fiber Mach-Zehnder interferometer combined with a fiber Bragg grating. Opt. Commun. 2016, 372, 196–200. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, L.; Dang, Y.; Xia, F.; Zhang, Y.; Zhao, Y.; Hu, H.; Li, J. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer. Sens. Actuators B Chem. 2016, 225, 213–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.-G.; Cai, L.; Yang, Y. Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sens. Actuators B Chem. 2015, 221, 406–410. [Google Scholar] [CrossRef]
- Konidakis, I.; Konstantaki, M.; Tsibidis, G.D.; Pissadakis, S. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber. Opt. Express 2015, 23, 31496–31509. [Google Scholar] [CrossRef] [PubMed]
- Consales, M.; Pisco, M.; Cusano, A. Lab-on-fiber technology: A new avenue for optical nanosensors. Photonics Sens. 2012, 2, 289–314. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent Developments in Micro-Structured Fiber Optic Sensors. Fibers 2017, 5, 3. https://doi.org/10.3390/fib5010003
Xu Y, Lu P, Chen L, Bao X. Recent Developments in Micro-Structured Fiber Optic Sensors. Fibers. 2017; 5(1):3. https://doi.org/10.3390/fib5010003
Chicago/Turabian StyleXu, Yanping, Ping Lu, Liang Chen, and Xiaoyi Bao. 2017. "Recent Developments in Micro-Structured Fiber Optic Sensors" Fibers 5, no. 1: 3. https://doi.org/10.3390/fib5010003
APA StyleXu, Y., Lu, P., Chen, L., & Bao, X. (2017). Recent Developments in Micro-Structured Fiber Optic Sensors. Fibers, 5(1), 3. https://doi.org/10.3390/fib5010003