Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review
Abstract
:1. Introduction
2. Review of Literature
3. Extracts from Various Technological Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panwar, N.; Chauhan, A. Fabrication methods of particulate reinforced aluminium metal matrix, composite—A review. Mater. Today 2018, 5, 5933–5939. [Google Scholar] [CrossRef]
- Venugopal, A.; Manoharan, N. Evaluation of mechanical properties of aluminium metal matrix composite for marine applications. ARPN J. Eng. Appl. Sci. 2015, 10, 5557–5559. [Google Scholar]
- Ranjith, R.; Kumar, G.S.; Seenivasan, N. A Review on Advancements in Aluminium Matrix Composites. Int. J. Adv. Eng. Technol. 2016, VII, 173–176. [Google Scholar]
- Ghasali, E.; Shirvanimoghaddam, K.; Pakseresht, A.H.; Alizadeh, M.; Ebadzadeh, T. Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process. J. Alloys Compd. 2017, 705, 283–289. [Google Scholar] [CrossRef]
- Youssef, E.; Kady, E.; Mahmoud, T.S. On the Fabrication of A356/Al2O3 Metal Matrix Composites Using Rheo Casting and Squeeze Casting Techniques. J. Mat. Sci. Eng. 2014, 3. [Google Scholar] [CrossRef]
- Koch, K.M.; Hargreaves, B.A.; Butts Pauly, K.; Chen, W.; Gold, G.E.; King, K.F. Magnetic resonance imaging near metal implants. J. Mag. Res. Imaging 2010, 32, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Ghasali, E.; Sangpour, P.; Jam, A.; Rajaei, H.; Shirvanimoghaddam, K.; Ebadzadeh, T. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch. Civ. Mech. Eng. 2018, 18, 1042–1054. [Google Scholar] [CrossRef]
- Thandalam, S.K.; Ramanathan, S.; Sundarrajan, S. Synthesis, microstructural and Mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): A review. J. Mat. Res. Technol. 2015, 4, 333–347. [Google Scholar] [CrossRef]
- Sachit, T.S.; Sapthagiri Prasad, N.; Aameer Khan, M. Effect of Particle Size on Mechanical and Tribological Behavior of LM4/SiCp Based MMC. Mater. Today 2018, 5, 5901–5907. [Google Scholar] [CrossRef]
- Fayomi, O.S.I.; Joseph, O.O.; Akande, I.G.; Ohiri, C.K.; Enechi, K.O.; Udoye, N.E. Effect of CCBP doping on the multifunctional Al-0.5 Mg-15CCBP superalloy using liquid metallurgy process for advanced application. J. Alloys Compd. 2019, 783, 246–255. [Google Scholar] [CrossRef]
- Asuke, F.; Aigbodion, V.S.; Abdulwahab, M.; Fayomi, O.S.I.; Popoola, A.P.I.; Nwoyi, C.I.; Garba, B. Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites. Res. Phys. 2012, 2, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Atuanya, C.U.; Aigbodion, V.S. Evaluation of Al-Cu-Mg alloy/bean pod ash nanoparticles synthesis by double layer feeding-stir casting method. J. Alloys Compd. 2014, 601, 251–259. [Google Scholar] [CrossRef]
- Rao, K.V.S.; Anil, K.C.; Akash; Girisha, K.G. Effect of Particle Size on Mechanical Properties of Al RMp Metal Matrix Composites. Mater. Today 2017, 4, 11154–11157. [Google Scholar] [CrossRef]
- Thirumoorthy, A.; Arjunan, T.V.; Senthil Kumar, K.L. Latest Research Development in Aluminium Matrix with Particulate Reinforcement Composites—A Review. Mater. Today 2018, 5, 1657–1665. [Google Scholar] [CrossRef]
- Hassan, S.B.; Aigbodion, V.S. Experimental correlation between varying silicon carbide and hardness values in heat-treated Al-Si-Fe/SiC particulate composites. Mater. Sci. Eng. A 2007, 454–455, 342–348. [Google Scholar] [CrossRef]
- Natarajan, N.; Vijayarangan, S.; Rajendran, I. Wear behaviour of A356/25SiC aluminium matrix composites sliding against automobile friction material. Wear 2006, 261, 812–822. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, D.; Yin, J.; Zuo, K.; Xia, Y.; Liang, H.; Zeng, Y.P. Microstructure and mechanical properties of Aluminium matrix composites reinforced with pre-oxidized βSi3N4 whiskers. Mater. Sci. Eng. A 2018, 723, 109–117. [Google Scholar] [CrossRef]
- Ochieze, B.Q.; Nwobi-Okoye, C.C.; Atamuo, P.N. Experimental study of the effect of wear parameters on the wear behavior of A356 alloy/cow horn particulate composites. Def. Technol. 2018, 14, 77–82. [Google Scholar] [CrossRef]
- Saravanan, S.D.; Kumar, M.S. Effect of mechanical properties on rice husk ash reinforced Aluminium alloy (AlSi10Mg) matrix composites. Proc. Eng. 2013, 64, 1505–1513. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Alaneme, K.K.; Chown, L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; Mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015, 4, 434–445. [Google Scholar] [CrossRef]
- Liuzzi, S.; Sanarica, S.; Stefanizzi, P. Use of agro-wastes in building materials in the Mediterranean area: A review. Energy Procedia 2017, 126, 242–249. [Google Scholar] [CrossRef]
- Hima Gireesh, C.; Durga Prasad, K.G.; Ramji, K.; Vinay, P.V. Mechanical Characterization of Aluminium Metal Matrix Composite Reinforced with Aloe vera powder. Mater. Today 2018, 5, 3289–3297. [Google Scholar] [CrossRef]
- Nwobi-Okoye, C.C.; Ochieze, B.Q. Age hardening process modeling and optimization of Aluminium alloy A356/Cow horn particulate composite for brake drum application using RSM, ANN and simulated annealing. Def. Technol. 2018, 14, 336–345. [Google Scholar] [CrossRef]
- Atuanya, C.U.; Ibhadode, A.O.A.; Dagwa, I.M. Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. Res. Phys. 2012, 2, 142–149. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Bodunrin, M.O.; Awe, A.A. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. J. King Saud Univ. Eng. Sci. 2018, 30, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Alaneme, K.K.; Olubambi, P.A. Corrosion and wear behavior of rice husk ash – Alumina reinforced Al-Mg-Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2013, 2, 188–194. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, P.; Rana, R.S. Effect of Rice Husk ash Reinforcements on Mechanical properties of Aluminium alloy (LM6) Matrix Composites. Mater. Today 2018, 5, 6018–6022. [Google Scholar] [CrossRef]
- Sahoo, B.; Kumar, R.; Joseph, J.; Sharma, A.; Paul, J. Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique. Surf. Coat. Technol. 2017, 309, 563–572. [Google Scholar] [CrossRef]
- Raja, T.; Sahu, O.P. Effects on Microstructure and Hardness of Al-B4C Metal Matrix Composite Fabricated through Powder Metallurgy. Int. J. Mech. Eng. 2014, 1, 1–5. [Google Scholar]
- Alizadeh, A.; Taheri-Nassaj, E.; Baharvandi, H.R. Preparation and investigation of Al – 4 wt.% B4C nanocomposite powders using mechanical milling. Bull. Mater. Sci. 2011, 34, 1039–1048. [Google Scholar] [CrossRef]
- Elanchezhian, C.; Ramnath, B.V.; Ramakrishnan, G.; Rajendrakumar, M.; Naveenkumar, V.; Saravanakumar, M.K. Review on mechanical properties of natural fiber composites. Mater. Today 2018, 5, 1785–1790. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Jiang, B.; Zeng, Y.; Wang, Q.; Jiang, Z.; Pan, F. Effect of Al content on microstructure and mechanical properties of as-cast Mg-5Nd alloys. J. Alloys Compd. 2018, 737, 263–270. [Google Scholar] [CrossRef]
- Gopalakannan, S.; Senthilvelan, T. Synthesis and Characterization of Al 7075 reinforced with SiC and B 4 C nano particles fabricated by ultrasonic cavitation method. J. Sci. Ind. Res 2015, 74, 281–285. [Google Scholar]
- Mert, B.D. Corrosion protection of aluminium by electrochemically synthesized composite organic coating. Corros. Sci. 2015, 103, 88–94. [Google Scholar] [CrossRef]
- Ulmer, L.; Pitard, F.; Poncet, D.; Demolliens, O. Formation of Al3Ti during physical vapour deposition of titanium on aluminium. Microelectron. Eng. 1997, 37/38, 381–387. [Google Scholar] [CrossRef]
- Urena, A.E.E.; Martinez, P.; Gil Rodrigo, L. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos. Sci. Technol. 2004, 64, 1843–1854. [Google Scholar] [CrossRef]
- Sarada, B.N.; Srinivasa Murthy, P.L.; Ugrasen, G. Hardness and wear characteristics of Hybrid Aluminium Metal Matrix Composites produced by stir casting technique. Mater. Today 2015, 2, 2878–2885. [Google Scholar] [CrossRef]
- Mendoza-Duarte, J.M.; Estrada-Guel, I.; Carreno-Gallardo, C.; Martinez-Sanchez, R. Study of Al composites prepared by high-energy ball milling: Effect of processing conditions. J. Alloys Compd. 2015, S172–S177. [Google Scholar] [CrossRef]
- Deaquino-Lara, R.; Gutierrez-Castaneda, E.; Estrada-Guel, I.; Hinojosa-Ruiz, G.; Garcia Sanchez, E.; Herrera-Ramirez, J.M.; PerezBustamante, R.; Martinez-Sanchez, R. Structural characterization of aluminium alloy 7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Des. 2014, 53, 1104–1111. [Google Scholar] [CrossRef]
- Sweet, G.A.; Brochu, M.; Hexemer, R.L., Jr.; Donaldson, I.W.; Bishop, D.P. Consolidation of aluminium-based metal matrix composites via spark plasma sintering. Mater. Sci. Eng. A 2015, 648, 123–133. [Google Scholar] [CrossRef]
- Bin, X.; Xiaogang, W. Thermo-physical properties and reaction process of SiCp/Al-7Si 5Mg aluminium matrix composites fabricated by pressureless infiltration. Rare Met. Mater. Eng. 2015, 44, 1057–1061. [Google Scholar] [CrossRef]
- Srivastava, N.; Chaudhari, G.P. Strengthening in Al alloy nano composites fabricated by ultrasound assisted solidification technique. Mater. Sci. Eng. A 2016, 651, 241–247. [Google Scholar] [CrossRef]
- Akbari, M.K.; Mirzaee, O.; Baharvandi, H.R. Fabrication and study on mechanical properties and fracture behaviour of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 2013, 46, 199–205. [Google Scholar] [CrossRef]
- Khorramie, S.A.; Baghchesara, M.A.; Gohari, D.P. Fabrication of aluminium matrix composites reinforced with Al2ZrO5 nano particulates synthesized by sol-gel auto combustion method. Trans. Nonferrous Soc. China 2013, 23, 1556–1562. [Google Scholar] [CrossRef]
- Lancaster, L.; Lung, M.H.; Sujan, D.; Ash, A.C.S. Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability. Int. J. Environ. Ecol. Eng. 2013, 7, 35–43. [Google Scholar]
- Vinod, B.; Ramanathan, S.; Anandajothi, M. A novel approach for utilization of agro-industrial waste materials as reinforcement with Al–7Si–0.3 Mg matrix hybrid composite on tribological behavior. SN Appl. Sci. 2019, 1, 62. [Google Scholar] [CrossRef]
Authors | Highlights/Contributions | Technologies |
---|---|---|
Sahoo et al. [28] |
|
|
Raja and Sahu [29] |
|
|
Alizadeh and Baharvandi [30] |
|
|
Elanchezhian et al. [31] |
|
|
Hassan and Aigbodion [15] |
|
|
Natarajan et al. [16] |
|
|
Zhang et al. [17] |
|
|
Rao et al. [12] |
|
|
Sachit et al. [9] |
|
|
Liu et al. [32] |
|
|
Senthilvelan [33] |
|
|
S/N | Manufacturing Techniques | Authors |
---|---|---|
1 | Powder metallurgy | Basak [34] |
2 | Physical vapour deposition | Ulmer et al. [35] |
3 | Oxidation treatment | Urena et al. [36] |
4 | Stir casting | Sarada et al. [37] |
5 | High energy ball milling | Mendoza et al. [38] |
6 | Mechanical alloying and hot extrusion | Deaquino et al. [39] |
7 | Spark plasma sintering | Sweet et al. [40] |
8 | Pressureless infiltration | Xie et al. [41] |
9 | Ultrasound assisted solidification | Neeraj et al. [42] |
10 | Stir casting with the vortex method | Akbari et al. [43] |
11 | Stir casting | Khorramie et al. [44] |
Agro-Waste | Chemical Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 (%) | CaO (%) | Fe2O3 (%) | K2O (%) | MgO (%) | Na2O (%) | SiO2 (%) | SO3 (%) | P2O5 (%) | Li2O * (%) | ||
Rice husk ash | Before treatment | 4.10 | 0.34 | 0.64 | 2.15 | 0.64 | 0.15 | 91.6 | - | - | - |
After treatment | 3.06 | 0.56 | 0.15 | 2.67 | 0.73 | 0.36 | 91.6 | - | - | - | |
Fly ash | Before treatment | 29.60 | 0.10 | 0.72 | 3.53 | 0.34 | - | 64.6 | - | - | - |
After treatment | 25.60 | 0.10 | 0.69 | 3.14 | 0.56 | - | 69.5 | - | - | - | |
Palm oil clinkers | 3.50 | 2.30 | 5.18 | 4.66 | 1.24 | 81.8 | 0.76 | - | - | - | |
Palm oil fuel ash | 5.45 | 7.50 | - | 5.30 | 3.93 | - | 49.20 | 1.73 | 6.41 | 13.85 | |
Coconut shell ash | 5.45 | 0.57 | 12.40 | 0.52 | 16.2 | 0.45 | 45.05 | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, O.O.; Babaremu, K.O. Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review. Fibers 2019, 7, 33. https://doi.org/10.3390/fib7040033
Joseph OO, Babaremu KO. Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review. Fibers. 2019; 7(4):33. https://doi.org/10.3390/fib7040033
Chicago/Turabian StyleJoseph, Olufunmilayo O., and Kunle O. Babaremu. 2019. "Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review" Fibers 7, no. 4: 33. https://doi.org/10.3390/fib7040033
APA StyleJoseph, O. O., & Babaremu, K. O. (2019). Agricultural Waste as a Reinforcement Particulate for Aluminum Metal Matrix Composite (AMMCs): A Review. Fibers, 7(4), 33. https://doi.org/10.3390/fib7040033