Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Intermediate and Dye Synthesis
2.2.1. Synthesis of 5-Carboxy-2,3,3-trimethyl-1-(12-1-methylimidazoledodecyl)-3H-indolium Iodide
2.2.2. Synthesis of Symmetrical Squaraine Dye SQ-80
2.2.3. Characterizations of Synthesized SQ-80
2.3. Fabrication and Characterization of DSSCs
2.3.1. Device Fabrication
2.3.2. Device Characterization
3. Results and Discussion
3.1. Electronic Absorption Spectra
3.2. Adsorption of Dye Molecules on TiO2
3.3. Cyclic Voltammetry
3.4. Energy Band Diagram
3.5. Photovoltaic Characterization
3.6. Electrochemical Impedance Spectra
3.7. Relative Durability of DSSCs
3.8. Verification of Electrolyte Functionality by Mixture of SQ-77 and SQ-80 Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- REN21. Renewables 2023 Global Status Report Collection, Global Overview; REN21 Secretariat: Paris, France, 2023; pp. 14–17. [Google Scholar]
- Deng, R.; Chang, N.L.; Ouyang, Z.; Chong, C.M. A Techno-Economic Review of Silicon Photovoltaic Module Recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S.A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S.G. Advanced Research Trends in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2021, 9, 10527–10545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, J.; Jiao, J.; Huang, L.; Tang, J. Recent Advances of Polymer Acceptors for High-Performance Organic Solar Cells. J. Mater. Chem. C 2019, 8, 28–43. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. Large-Area Perovskite Solar Cells-a Review of Recent Progress and Issues. RSC Adv. 2018, 8, 10489–10508. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Maddah, H.A.; Berry, V.; Behura, S.K. Biomolecular Photosensitizers for Dye-Sensitized Solar Cells: Recent Developments and Critical Insights. Renew. Sustain. Energy Rev. 2020, 121, 109678. [Google Scholar] [CrossRef]
- Bella, F.; Gerbaldi, C.; Barolo, C.; Grätzel, M. Aqueous Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2015, 44, 3431–3473. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Cao, D.; Yin, H.; Li, X.; Cheng, P.; Mi, B.; Gao, Z.; Deng, W. In Situ Preparation of Hierarchically Structured Dual-Layer TiO2 Films by E-Spray Method for Efficient Dye-Sensitized Solar Cells. Org. Electron. 2017, 49, 135–141. [Google Scholar] [CrossRef]
- Parisi, M.L.; Dessì, A.; Zani, L.; Maranghi, S.; Mohammadpourasl, S.; Calamante, M.; Mordini, A.; Basosi, R.; Reginato, G.; Sinicropi, A. Combined LCA and Green Metrics Approach for the Sustainability Assessment of an Organic Dye Synthesis on Lab Scale. Front. Chem. 2020, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Michaels, H.; Rinderle, M.; Freitag, R.; Benesperi, I.; Edvinsson, T.; Socher, R.; Gagliardi, A.; Freitag, M. Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: Towards Autonomous Smart Sensors for the Internet of Things. Chem. Sci. 2020, 11, 2895–2906. [Google Scholar] [CrossRef]
- Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-Efficiency Dye-Sensitized Solar Cell with a Novel Co-Adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060. [Google Scholar] [CrossRef]
- Kang, S.H.; Jeong, M.J.; Eom, Y.K.; Choi, I.T.; Kwon, S.M.; Yoo, Y.; Kim, J.; Kwon, J.; Park, J.H.; Kim, H.K. Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications. Adv. Energy Mater. 2017, 7, 1602117. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.I.; Hanaya, M. Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Recent Investigations on Thiocyanate-Free Ruthenium(II) 2,2′-Bipyridyl Complexes for Dye-Sensitized Solar Cells. Molecules 2021, 26, 7638. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, Y.; Vats, A.K.; Kato, T.; Shafie, S.; Pandey, S.S. Charge Transfer and Catalytic Properties of Various PEDOTs as Pt-Free Counter Electrodes for Dye-Sensitized Solar Cells. Jpn. J. Appl. Phys. 2022, 61, SB1010. [Google Scholar] [CrossRef]
- Kurokawa, Y.; Kato, T.; Pandey, S.S. Controlling the Electrocatalytic Activities of Conducting Polymer Thin Films toward Suitability as Cost-Effective Counter Electrodes of Dye-Sensitized Solar Cells. Synth. Met. 2023, 296, 117362. [Google Scholar] [CrossRef]
- Shaban, S.; Roy, P.; Vats, A.K.; Pandey, S.S. Bifacial Dye-Sensitized Solar Cells Utilizing Green Colored NIR Sensitive Unsymmetrical Squaraine Dye. Jpn. J. Appl. Phys. 2021, 61, SB1005. [Google Scholar] [CrossRef]
- Shaban, S.; Vats, A.K.; Pandey, S.S. Bifacial Dye-Sensitized Solar Cells Utilizing Visible and NIR Dyes: Implications of Dye Adsorption Behaviour. Molecules 2023, 28, 2784. [Google Scholar] [CrossRef]
- Shaban, S.; Pradhan, S.; Pandey, S.S. Fabrication and Characterization of Bifacial Dye-Sensitized Solar Cells Utilizing Indoline Dye with Iodine- and Cobalt-Based Redox Electrolytes. Phys. Status Solidi Appl. Mater. Sci. 2023, 220, 2300241. [Google Scholar] [CrossRef]
- Roy, P.; Vats, A.K.; Tang, L.; Pandey, S.S. Implication of Color of Sensitizing Dyes on Transparency and Efficiency of Transparent Dye-Sensitized Solar Cells. Sol. Energy 2021, 225, 950–960. [Google Scholar] [CrossRef]
- Roy, P.; Kurokawa, Y.; Pandey, S.S. Controlling the TiO2–Dye Nanomolecular Interactions for Improving the Photoconversion in Transparent Dye-Sensitized Solar Cells. Phys. Status Solidi Appl. Mater. Sci. 2023, 220, 2300158. [Google Scholar] [CrossRef]
- Roy, P.; Vats, A.K.; Tang, L.; Kurokawa, Y.; Pandey, S.S. Controlling Adsorption of Two Dyes on TiO2 Surface to Improve the Efficiency of See-through Dye-Sensitized Solar Cells. Sol. Energy 2024, 269, 112339. [Google Scholar] [CrossRef]
- Grifoni, F.; Bonomo, M.; Naim, W.; Barbero, N.; Alnasser, T.; Dzeba, I.; Giordano, M.; Tsaturyan, A.; Urbani, M.; Torres, T.; et al. Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Near-Infrared Dye-Sensitized Solar Cells. Adv. Energy Mater. 2021, 11, 2101598. [Google Scholar] [CrossRef]
- Yoon, S.; Tak, S.; Kim, J.; Jun, Y.; Kang, K.; Park, J. Application of Transparent Dye-Sensitized Solar Cells to Building Integrated Photovoltaic Systems. Build. Environ. 2011, 46, 1899–1904. [Google Scholar] [CrossRef]
- Aslam, A.; Mehmood, U.; Arshad, M.H.; Ishfaq, A.; Zaheer, J.; Ul Haq Khan, A.; Sufyan, M. Dye-Sensitized Solar Cells (DSSCs) as a Potential Photovoltaic Technology for the Self-Powered Internet of Things (IoTs) Applications. Sol. Energy 2020, 207, 874–892. [Google Scholar] [CrossRef]
- Dessì, A.; Chalkias, D.A.; Bilancia, S.; Sinicropi, A.; Calamante, M.; Mordini, A.; Karavioti, A.; Stathatos, E.; Zani, L.; Reginato, G. D-A-π-A Organic Dyes with Tailored Green Light Absorption for Potential Application in Greenhouse-Integrated Dye-Sensitized Solar Cells. Sustain. Energy Fuels 2021, 5, 1171–1183. [Google Scholar] [CrossRef]
- Dang Quang, L.N.; Kaliamurthy, A.K.; Hao, N.H. Co-Sensitization of Metal Based N719 and Metal Free D35 Dyes: An Effective Strategy to Improve the Performance of DSSC. Opt. Mater. 2021, 111, 110589. [Google Scholar] [CrossRef]
- Elmorsy, M.R.; Su, R.; Abdel-Latif, E.; Badawy, S.A.; El-Shafei, A.; Fadda, A.A. New Cyanoacetanilides Based Dyes as Effective Co-Sensitizers for DSSCs Sensitized with Ruthenium (II) Complex (HD-2). J. Mater. Sci. Mater. Electron. 2020, 31, 7981–7990. [Google Scholar] [CrossRef]
- Younas, M.; Harrabi, K. Performance Enhancement of Dye-Sensitized Solar Cells via Co-Sensitization of Ruthenium (II) Based N749 Dye and Organic Sensitizer RK1. Sol. Energy 2020, 203, 260–266. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.K.; Dixit, R.; Vanka, K.; Krishnamoorthy, K.; Nithyanandhan, J. Visible, Far-Red, and Near-Infrared Active Unsymmetrical Squaraine Dyes Based on Extended Conjugation within the Polymethine Framework for Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2024, 7, 1461–1475. [Google Scholar] [CrossRef]
- Elmorsy, M.R.; Badawy, S.A.; Alzahrani, A.Y.A.; El-Rayyes, A. Molecular Design and Synthesis of Acetohydrazonoyl Cyanide Structures as Efficient Dye-Sensitized Solar Cells with Enhancement of the Performance of the Standard N-719 Dye upon Co-Sensitization. Opt. Mater. 2023, 135, 113359. [Google Scholar] [CrossRef]
- Karaoğlan, G.K.; Hışır, A.; Maden, Y.E.; Karakuş, M.Ö.; Koca, A. Synthesis, Characterization, Electrochemical, Spectroelectrochemical and Dye-Sensitized Solar Cell Properties of Phthalocyanines Containing Carboxylic Acid Anchoring Groups as Photosensitizer. Dyes Pigments 2022, 204, 110390. [Google Scholar] [CrossRef]
- Koteshwar, D.; Prasanthkumar, S.; Singh, S.P.; Chowdhury, T.H.; Bedja, I.; Islam, A.; Giribabu, L. Effects of Methoxy Group(s) on D-π-A Porphyrin Based DSSCs: Efficiency Enhanced by Co-Sensitization. Mater. Chem. Front. 2022, 6, 580–592. [Google Scholar] [CrossRef]
- Xu, F.; Testoff, T.T.; Wang, L.; Zhou, X. Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells. Molecules 2020, 25, 4478. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wu, Y.; Jiang, J.; Guo, X.; Heng, P.; Wang, L.; Zhang, J. Rational Design of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells: The Influence of π-Spacers and Intermolecular Aggregation on Their Photovoltaic Performances. J. Phys. Chem. C 2020, 124, 9233–9242. [Google Scholar] [CrossRef]
- Singh, A.K.; Maibam, A.; Javaregowda, B.H.; Bisht, R.; Kudlu, A.; Krishnamurty, S.; Krishnamoorthy, K.; Nithyanandhan, J. Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Position of the Anchoring Group Controls the Orientation and Self-Assembly of Sensitizers on the TiO2 Surface and Modulates Its Flat Band Potential. J. Phys. Chem. C 2020, 124, 18436–18451. [Google Scholar] [CrossRef]
- Jadhav, M.M.; Vaghasiya, J.V.; Patil, D.; Soni, S.S.; Sekar, N. Synthesis of Novel Colorants for DSSC to Study Effect of Alkyl Chain Length Alteration of Auxiliary Donor on Light to Current Conversion Efficiency. J. Photochem. Photobiol. A Chem. 2019, 377, 119–129. [Google Scholar] [CrossRef]
- Pradhan, S.; Kurokawa, Y.; Shaban, S.; Pandey, S.S. Squaric Acid Core Substituted Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Effect of Electron Acceptors on Their Photovoltaic Performance. Colorants 2023, 2, 654–673. [Google Scholar] [CrossRef]
- Vats, A.K.; Roy, P.; Tang, L.; Hayase, S.; Pandey, S.S. Unravelling the Bottleneck of Phosphonic Acid Anchoring Groups Aiming toward Enhancing the Stability and Efficiency of Mesoscopic Solar Cells. Front. Chem. Sci. Eng. 2021, 16, 1060–1078. [Google Scholar] [CrossRef]
- Vats, A.K.; Pradhan, A.; Hayase, S.; Pandey, S.S. Synthesis, Photophysical Characterization and Dye Adsorption Behavior in Unsymmetrical Squaraine Dyes with Varying Anchoring Groups. J. Photochem. Photobiol. A Chem. 2020, 394, 112467. [Google Scholar] [CrossRef]
- Pradhan, A.; Sai Kiran, M.; Kapil, G.; Hayase, S.; Pandey, S.S. Synthesis and Photophysical Characterization of Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells Utilizing Cobalt Electrolytes. ACS Appl. Energy Mater. 2018, 1, 4545–4553. [Google Scholar] [CrossRef]
- Butnarasu, C.; Barbero, N.; Viscardi, G.; Visentin, S. Unveiling the Interaction between PDT Active Squaraines with CtDNA: A Spectroscopic Study. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2021, 250, 119224. [Google Scholar] [CrossRef] [PubMed]
- Mavileti, S.K.; Bila, G.; Utka, V.; Bila, E.; Kato, T.; Bilyy, R.; Pandey, S.S. Photophysical Characterization and Biointeractions of NIR Squaraine Dyes for in Vitro and in Vivo Bioimaging. ACS Appl. Bio Mater. 2024, 7, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Jiao, Y.; Huang, Y.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Two Different Donor Subunits Substituted Unsymmetrical Squaraines for Solution-Processed Small Molecule Organic Solar Cells. Org. Electron. 2016, 32, 179–186. [Google Scholar] [CrossRef]
- Ananda Rao, B.; Kim, H.; Son, Y.A. Synthesis of Near-Infrared Absorbing Pyrylium-Squaraine Dye for Selective Detection of Hg2+. Sens. Actuators B Chem. 2013, 188, 847–856. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, X.; Zheng, W.; Liu, X.; Zhou, J.; Zhang, N.; Wang, F.; Shangguan, D. Dicyanomethylene-Functionalized Squaraine as a Highly Selective Probe for Parallel G-Quadruplexes. Anal. Chem. 2014, 86, 7063–7070. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Kurokawa, Y.; Mavileti, S.K.; Pandey, S.S. Design, Synthesis, and Photophysical Characterization of Multifunctional Far-Red Squaraine Dyes for Dye-Sensitized Solar Cells. Phys. Status Solidi Appl. Mater. Sci. 2023, 220, 2300254. [Google Scholar] [CrossRef]
- Pham, W.; Lai, W.F.; Weissleder, R.; Tung, C.H. High Efficiency Synthesis of a Bioconjugatable Near-Infrared Fluorochrome. Bioconjug. Chem. 2003, 14, 1048–1051. [Google Scholar] [CrossRef]
- Pandey, S.S.; Inoue, T.; Fujikawa, N.; Yamaguchi, Y.; Hayase, S. Substituent Effect in Direct Ring Functionalized Squaraine Dyes on near Infra-Red Sensitization of Nanocrystalline TiO2 for Molecular Photovoltaics. J. Photochem. Photobiol. A Chem. 2010, 214, 269–275. [Google Scholar] [CrossRef]
- Periyasamy, K.; Sakthivel, P.; Venkatesh, G.; Vennila, P.; Sheena Mary, Y. Synthesis and Design of Carbazole-Based Organic Sensitizers for DSSCs Applications: Experimental and Theoretical Approaches. Chem. Pap. 2024, 78, 447–461. [Google Scholar] [CrossRef]
- Mishra, A.; Behera, R.K.; Behera, P.K.; Mishra, B.K.; Behera, G.B. Cyanines during the 1990s: A Review. Chem. Rev. 2000, 100, 1973–2011. [Google Scholar] [CrossRef] [PubMed]
- Yum, J.H.; Moon, S.J.; Humphry-Baker, R.; Walter, P.; Geiger, T.; Nüesch, F.; Grätzel, M.; Nazeeruddin, M.D.K. Effect of Coadsorbent on the Photovoltaic Performance of Squaraine Sensitized Nanocrystalline Solar Cells. Nanotechnology 2008, 19, 424005. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Park, M.S.; Kim, K. Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries. ChemSusChem 2015, 8, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Ogomi, Y.; Kato, T.; Hayase, S. Dye Sensitized Solar Cells Consisting of Ionic Liquid and Solidification. J. Photopolym. Sci. Technol. 2006, 19, 403–408. [Google Scholar] [CrossRef]
- Morimoto, T.; Fujikawa, N.; Ogomi, Y.; Pandey, S.S.; Ma, T.; Hayase, S. Design of Far-Red Sensitizing Squaraine Dyes Aiming towards the Fine Tuning of Dye Molecular Structure. J. Nanosci. Nanotechnol. 2016, 16, 3282–3288. [Google Scholar] [CrossRef] [PubMed]
- Khazraji, A.C.; Hotchandani, S.; Das, S.; Kamat, P.V. Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. J. Phys. Chem. B 1999, 103, 4693–4700. [Google Scholar] [CrossRef]
- Bhatt, P.; Pandey, K.; Yadav, P.; Tripathi, B.; Kumar, M. Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell Due to Ageing. Int. J. Photoenergy 2016, 2016, 8523150. [Google Scholar] [CrossRef]
- Sarker, S.; Ahammad, A.J.S.; Seo, H.W.; Kim, D.M. Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation. Int. J. Photoenergy 2014, 2014, 851705. [Google Scholar] [CrossRef]
- Olsen, E.; Hagen, G.; Eric Lindquist, S. Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2. Sol. Energy Mater. Sol. Cells 2000, 63, 267–273. [Google Scholar] [CrossRef]
- Xue, G.; Guo, Y.; Yu, T.; Guan, J.; Yu, X.; Zhang, J.; Liu, J.; Zou, Z. Degradation Mechanisms Investigation for Long-Term Thermal Stability of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2012, 7, 1496–1511. [Google Scholar] [CrossRef]
- Hao, F.; Lin, H.; Zhang, J.; Zhuang, D.; Liu, Y.; Li, J. Influence of Iodine Concentration on the Photoelectrochemical Performance of Dye-Sensitized Solar Cells Containing Non-Volatile Electrolyte. Electrochim. Acta 2010, 55, 7225–7229. [Google Scholar] [CrossRef]
- Mathew, A.; Anand, V.; Rao, G.M.; Munichandraiah, N. Effect of Iodine Concentration on the Photovoltaic Properties of Dye Sensitized Solar Cells for Various I2/LiI Ratios. Electrochim. Acta 2013, 87, 92–96. [Google Scholar] [CrossRef]
- Datta, J.; Bhattacharya, A.; Kundu, K.K. Relative Standard Electrode Potentials of I3−/I−, I2/I3−, and I2/I− Redox Couples and the Related Formation Constants of I3− in Some Pure and Mixed Dipolar Aprotic Solvents. Bull. Chem. Soc. Jpn. 1988, 61, 1735–1742. [Google Scholar] [CrossRef]
- Nelson, I.V.; Iwamoto, R.T. Voltammetric Evaluation of the Stability of Trichloride, Tribromide, and Triiodide Ions in Nitromethane, Acetone, and Acetonitrile. J. Electroanal. Chem. 1964, 7, 218–221. [Google Scholar] [CrossRef]
Dye | λmax (Solution) | ε (Solution) (dm3·mol−1·cm−1) | λmax (TiO2) | Absorption Edge nm (eV) | Aggregation Index | Dye Loading (nmol/cm2) | Dye Desorption Rate (nmol/cm2/min) |
---|---|---|---|---|---|---|---|
SQ-4 | 646 nm | 2.96 × 105 | 650 nm | 700 nm (1.77 eV) | 0.83 | 29.3 | 5.86 |
SQ-77 | 646 nm | 2.91 × 105 | 648 nm | 700 nm (1.77 eV) | 0.88 | 54.0 | 6.00 |
SQ-80 | 646 nm | 3.28 × 105 | 646 nm | 687 nm (1.80 eV) | 0.67 | 35.6 | 2.09 |
Dye | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|
SQ-4 | 12.0 | 0.62 | 0.57 | 4.21 |
SQ-77 | 11.0 | 0.61 | 0.56 | 3.77 |
SQ-80 | 10.7 | 0.59 | 0.59 | 3.74 |
Dye | Rs (Ω) | R1 (Ω) | R2 (Ω) | R3 (Ω) | fp (Hz) | Ʈs (ms) |
---|---|---|---|---|---|---|
SQ-4 | 27.5 | 9.42 | 20.3 | 1.30 | 18.9 | 8.41 |
SQ-77 | 24.0 | 26.7 | 18.0 | 3.35 | 30.0 | 5.31 |
SQ-80 | 29.2 | 12.0 | 16.9 | 0.53 | 37.8 | 4.22 |
Dye | Time (h) | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|---|
SQ-4 | 0 | 8.26 (±0.90) | 0.61 (±0.01) | 0.60 (±0.02) | 3.00 (±0.23) |
450 | 3.31 (±0.18) | 0.66 (±0.01) | 0.72 (±0.002) | 1.57 (±0.11) | |
SQ-80 | 0 | 7.17 (±0.32) | 0.583 (±0.005) | 0.618 (±0.02) | 2.58 (±0.12) |
450 | 4.81 (±0.46) | 0.65 (±0.01) | 0.67 (±0.031) | 2.14 (±0.14) |
SQ-77:SQ-80 | I2 and LiI Conc. (mM) | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|---|
1:1 | 50, 100 | 10.1 | 0.58 | 0.59 | 3.48 |
1:4 | 10.0 | 0.62 | 0.60 | 3.68 | |
4:1 | 10.2 | 0.58 | 0.59 | 3.46 | |
SQ-4 | 9.30 | 0.66 | 0.60 | 3.70 | |
1:1 | 0, 0 | 4.05 | 0.71 | 0.51 | 1.45 |
1:4 | 4.60 | 0.73 | 0.45 | 1.52 | |
4:1 | 3.87 | 0.70 | 0.52 | 1.41 | |
SQ-4 | 3.43 | 0.64 | 0.11 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, K.; Kurokawa, Y.; Pandey, S.S. Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications. Colorants 2024, 3, 198-213. https://doi.org/10.3390/colorants3030014
Mori K, Kurokawa Y, Pandey SS. Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications. Colorants. 2024; 3(3):198-213. https://doi.org/10.3390/colorants3030014
Chicago/Turabian StyleMori, Kota, Yuki Kurokawa, and Shyam S. Pandey. 2024. "Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications" Colorants 3, no. 3: 198-213. https://doi.org/10.3390/colorants3030014
APA StyleMori, K., Kurokawa, Y., & Pandey, S. S. (2024). Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications. Colorants, 3(3), 198-213. https://doi.org/10.3390/colorants3030014