Municipal Urban Waste Management—Challenges for Polish Cities in an Era of Circular Resource Management
Abstract
:1. Introduction
1.1. Theoretical Frameworks and Motives for Undertaking the Research
- Renewing and planning cities and other settlements in a way that ensures that all residents have access to basic services, such as energy, housing, transport, and public green spaces, simultaneously improving the use of resources and reducing environmental impact;
- Treating cities as environmentally resistant human settlements that drive sustainable development, stimulate innovation, and foster community cohesion and personal safety;
- Calling for protection of the world’s cultural and natural heritage and supporting positive economic, social, and environmental links between urban, suburban, and rural areas.
1.2. Literature Review and Research Purpose
- Factoring in the socioeconomic uncertainty with respect to the possibility of financing activities and changing human habits in the process of decision making;
- Developing adequate approaches towards sustainable management of solid municipal waste in countries with low income during the pandemic;
- Providing necessary training programs and decent regulations with the aim of improving people’s knowledge, attitudes, and practices in connection with solid waste management during the pandemic;
- Development of selective storage and collection of waste from households involved in healthcare or from small healthcare units;
- Creating feasible and controllable plans for collecting, processing, transferring, and eliminating infectious and non-infectious hospital waste during the pandemic in developing countries;
- Assessment of the sustainability of the life cycle for different scenarios of storing and managing municipal waste during the pandemic.
- Citizen–government partnership, e.g., the Advanced Locality Management Program of Mumbai [60];
- Identification of factors influencing successful implementation of solid waste management in the city, in particular: citizen participation, adequate resource availability, a successful waste management plan, public awareness, training and awareness of staff, market availability, and political commitment [61].
- Restructuring of the waste management sector towards compliance with the circular economy principles [65];
- Developing a set of indicators as the basis for setting long-term visions and goals concerning the city’s material resources and promoting the zero waste idea [66];
- Analysis of the impact of the zero waste strategy on greenhouse gas emissions [67];
- Promoting urban agriculture as part of a waste management strategy towards the circular economy [68];
- Taking into account decision-making processes considering both environmental and economic sustainability [69];
- Promoting the circular economy, especially in cities with high tourist traffic [70];
- Developing new management strategies, taking into account the environmental efficiency of waste management [71].
- Does the expenditure on waste management really translate into a reduction in the amount of waste in urban areas?
- Are there any positive trends in municipal solid waste management in cities?
- Are city authorities making sufficient efforts to create a circular economy in the context of municipal solid waste?
2. Methods
2.1. Econometric Model
- WASTE_UA—municipal waste collected (excluding collected separately) in urban areas (thousand tonnes);
- POPULATION—population in urban areas (persons);
- OUT_TRANS—outlays on municipal waste collection and transport (thousand PLN);
- OUT_LAND—outlays on rendering non-hazardous waste harmless and disposal of non-hazardous waste, including combined storage (thousand PLN);
- OUT_RECYC—outlays on recycling and utilization of waste (thousand PLN);
- OUT_RECLA—outlays on reclamation of waste landfills and devastated and degraded lands (thousand PLN).
2.2. Change Dynamics and Identification of Waste Management Activities in Cities
3. Results
- -
- There is a minimal average annual decrease in the amount of mixed municipal waste collected in urban areas (from 0.5% to 2.8%);
- -
- Outlays on fixed assets for environmental protection in the field of waste collection and transport, including collection and transport of municipal waste, show a faster annual average growth than the annual average quantity of waste collected non-selectively;
- -
- The average annual outlays on fixed assets for environmental protection in the field of recycling and reuse of waste as well as reclamation of landfill sites and disposal facilities as well as devastated and degraded areas are decreasing.
4. Discussion
- Including all residential real estate owners in the system of selective collection of municipal waste;
- State-wide introduction of consistent standards for selective municipal waste collection to prevent the unacceptable division into dry and wet waste;
- Ensuring the highest quality of collected waste using appropriate systems of selective waste collection to make the recycling of collected waste as effective as possible.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awasthi, A.K.; Cheela, V.R.S.; D’Adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero waste approach towards a sustainable waste management. Resour. Environ. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Rada, E.C.; Cioca, L. Optimizing the Methodology of Characterization of Municipal Solid Waste in EU under a Circular Economy Perspective. Energy Procedia 2017, 119, 72–85. [Google Scholar] [CrossRef]
- Pérez, L.E.; Ziegler-Rodríguez, K.; Pérez, A.T.E.; Vásquez, Ó.C.; Vázquez-Rowe, I. Closing the gap in the municipal solid waste management between metropolitan and regional cities from developing countries: A life cycle assessment approach. Waste Manag. 2021, 124, 314–324. [Google Scholar] [CrossRef]
- Gu, B.; Tang, X.; Liu, L.; Li, Y.; Fujiwara, T.; Sun, H.; Gu, A.; Yao, Y.; Duan, R.; Song, J.; et al. The recyclable waste recycling potential towards zero waste cities—A comparison of three cities in China. J. Clean. Prod. 2021, 295, 126358. [Google Scholar] [CrossRef]
- Cristiano, S.; Ghisellini, P.; D’Ambrosio, G.; Xue, J.; Gonella, A.N.F.; Ulgiati, S. Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. J. Clean. Prod. 2021, 293, 125856. [Google Scholar] [CrossRef]
- Lee-Geiller, S.; Kütting, G. From management to stewardship: A comparative case study of waste governance in New York City and Seoul metropolitan city. Resour. Conserv. Recycl. 2020, 164, 105110. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, A. Recent trends in solid waste management status, challenges, and potential for the future Indian cities—A review. Curr. Res. Environ. Sustain. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Pinupolu, P.; Kommineni, H.R. Best method of municipal solid waste management through public-private partnership for Vijayawada city. Mater. Today Proc. 2020, 33, 217–222. [Google Scholar] [CrossRef]
- Grodzińska-Jurczak, M.; Tarabuła, M.; Read, A.D. Increasing participation in rational municipal waste management—a case study analysis in Jaslo City (Poland). Resour. Conserv. Recycl. 2003, 38, 67–88. [Google Scholar] [CrossRef]
- Zając, P.; Avdiushchenko, A. The impact of converting waste into resources on the regional economy, evidence from Poland. Ecol. Model. 2020, 437, 109299. [Google Scholar] [CrossRef]
- Wąsowicz, K.; Famielec, S.; Chełkowski, M. Gospodarka Odpadami Komunalnymi We Współczesnych Miastach; [Municipal Waste Management in Modern cities]; Fundacja Uniwersytetu Ekonomicznego w Krakowie: Kraków, Poland, 2018. [Google Scholar]
- Jim, C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 2013, 16, 741–761. [Google Scholar] [CrossRef] [Green Version]
- Mörtberg, U.; Haas, J.; Zetterberg, A.; Franklin, J.P.; Jonsson, D.; Deal, B. Urban ecosystems and sustainable urban development—Analysing and assessing interacting systems in the Stockholm region. Urban Ecosyststems 2013, 16, 763–782. [Google Scholar] [CrossRef]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fratini, C.F.; Michael, S.G.; Jørgensen, S. Exploring circular economy imaginaries in European cities: A research agenda for the governance of urban sustainability transitions. J. Clean. Prod. 2019, 228, 974–989. [Google Scholar] [CrossRef]
- Lucertini, G.; Musco, F. Circular Urban Metabolism Framework. One Earth 2020, 2, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, A.; Szymańska, D. Ecologisation of Polish cities in the light of selected parameters of sustainable development. Sustain. Cities Soc. 2021, 64, 102538. [Google Scholar] [CrossRef]
- Ravichandran, C.; Venkatesan, G. Toward sustainable solid waste management—Challenges and opportunities. Handb. Adv. Approaches Pollut. Prev. Control 2021, 2, 67–103. [Google Scholar] [CrossRef]
- Gaubatz, P.; Hanink, D. Learning from Taiyuan: Chinese cities as urban sustainability laboratories. Geogr. Sustain. 2020, 1, 118–126. [Google Scholar] [CrossRef]
- Kulkarni, B.N. Environmental sustainability assessment of land disposal of municipal solid waste generated in Indian cities—A review. Environ. Dev. 2021, 33, 100490. [Google Scholar] [CrossRef]
- Tsai, F.M.; Bui, T.-D.; Tseng, M.-L.; Wu, K.-J. A causal municipal solid waste management model for sustainable cities in Vietnam under uncertainty: A comparison. Resour. Conserv. Recycl. 2019, 154, 104599. [Google Scholar] [CrossRef]
- Węcławowicz-Bilska, E. Polish cities of the future—Trends, concepts, implementations. Tech. Trans. Archit. 2014, 2-A, 307–326. [Google Scholar]
- Wesołowska, J. Urban infrastructure facilities as an essential public investment for sustainable cities—Indispensable but unwelcome objects of social conflicts. Case study of Warsaw, Poland. Transp. Res. Procedia 2016, 16, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Denis, M.; Cysek-Pawlak, M.M.; Krzysztofik, S.; Majewska, A. Sustainable and vibrant cities. Opportunities and threats to the development of Polish cities. Cities 2021, 109, 103014. [Google Scholar] [CrossRef]
- Roadmap Circular Resource Efficiency Management. Available online: https://ec.europa.eu/futurium/en/system/files/ged/roadmap_circular_resource_efficiency_management_plan_v6.pdf (accessed on 19 March 2021).
- Babu, R.; Prieto Veramendi, P.M.; Rene, E.R. Strategies for resource recovery from the organic fraction of municipal solid waste. Case Stud. Chem. Environ. Eng. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Ddiba, D.; Andersson, K.; Koop, S.H.A.; Ekener, E.; Finnveden, G.; Dickin, S. Goerning the circular economy: Assessing the capacity to implement resource-oriented sanitation and waste management systems in low-and middle-income countries. Earth Syst. Gov. 2020, 4, 100063. [Google Scholar] [CrossRef]
- Ríos, A.-M.; Picazo-Tadeo, A.J. Measuring environmental performance in the treatment of municipal solid waste: The case of the European Union-28. Ecol. Indic. 2021, 123, 107328. [Google Scholar] [CrossRef]
- Czikkely, M.; Hoang, N.H.; Fogarassy, C. Circular transformation of current business solutions in wastewater management. Pol. J. Manag. Stud. 2019, 20, 196–209. [Google Scholar] [CrossRef]
- Strategic Research and Innovation Agenda on Circular Economy. 2020. CICERONE. Available online: http://cicerone-h2020.eu/ (accessed on 19 March 2021).
- Ferronato, N.; Rada, E.C.; Portillo, M.A.G.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Amenta, L.; Attademo, A.; Remøy, H.; Berruti, G.; Cerreta, M.; Formato, E.; Palestino, M.F.; Russo, M. Managing the Transition towards Circular Metabolism: Living Labs as aCo-Creation Approach. Urban Plan. 2019, 4, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Tang, Y.-T.; Long, G.; Higgitt, D.; He, J.; Robinson, D. Future improvements on performance of an EU landfill directive driven municipal solid waste management for a city in England. Waste Manag. 2020, 102, 452–463. [Google Scholar] [CrossRef]
- Solano Meza, J.K.; Yepes, D.O.; Rodrigo-Ilarri, J.; Cassiraga, E. Predictive analysis of urban waste generation for the city of Bogota, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon 2019, 5, e02810. [Google Scholar] [CrossRef]
- Romano, G.; Rapposelli, A.; Marrucci, L. Improving waste production and recycling through zero-waste strategy and privatization: An empirical investigation. Resour. Conserv. Recycl. 2019, 146, 256–263. [Google Scholar] [CrossRef]
- da Silva Alcântara Fratta, K.D.; Campos Leite Toneli, J.T.; Antonio, G.C. Diagnosis of the management of solid urban waste of the municipalities of ABC Paulista of Brasil through the application of sustainability indicators. Waste Manag. 2019, 85, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lupo, T.; Cusumano, M. Towards more equity concerning quality of Urban Waste Management services in the context of cities. J. Clean. Prod. 2017, 171, 1324–1341. [Google Scholar] [CrossRef]
- Díaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of eco-efficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Cheng, C.C.; Shiu, E.C. Validation of a proposed instrument for measuring eco-innovation: An implementation perspective. Technovation 2012, 32, 329–344. [Google Scholar] [CrossRef]
- Broniewicz, E. Application of the environmental protection expenditure account. Manag. Environ. Qual. Int. J. 2007, 18, 298–308. [Google Scholar] [CrossRef]
- Moshiri, S.; Daneshmand, A. How effective is government spending on environmental protection in a developing country? An empirical evidence from Iran. J. Econ. Stud. 2020, 47, 789–803. [Google Scholar] [CrossRef]
- Zheng, J.; Sheng, P. The Impact of Foreign Direct Investment (FDI) on the Environment: Market Perspectives and Evidence from China. Economies 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Ma, J.; Yang, J. Optimizing environmental expenditures for maximizing economic performance. Manag. Decis. 2016, 54, 2544–2561. [Google Scholar] [CrossRef]
- Human Development Report 2020. Available online: http://hdr.undp.org/sites/default/files/hdr2020.pdf (accessed on 10 February 2021).
- Dmuchowski, P.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H.; Gworek, B. Green economy—Growth and maintenance of the conditions of green growth at the level of polish local authorities. J. Clean. Prod. 2021, 301, 126975. [Google Scholar] [CrossRef]
- Kożuch, M. Zmiany w finansowaniu przedsięwzięć ochrony środowiska przyrodniczego w Polsce [Changes in the Funding of Environmental Protection Projects in Poland]. Zesz. Nauk. Uniw. Ekon. W Krakowie [Crac. Rev. Econ. Manag.] 2018, 1, 61–78. [Google Scholar] [CrossRef]
- Behera, B.C. Challenges in handling COVID-19 waste and its management mechanism: A Review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100432. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.V.; Jiang, P.; Hemzal, M.; Klemeš, J.J. An update of COVID-19 influence on waste management. Sci. Total Environ. 2021, 754, 142014. [Google Scholar] [CrossRef]
- Oyedotun, T.D.T.; Oluwasinaayomi, F.K.; Famewo, A.; Oyedotun, T.D.; Moonsammy, S.; Ally, N.; Renn-Moonsammy, D.-M. Municipal waste management in the era of COVID-19: Perceptions, practices, and potentials for research in developing countries. Res. Glob. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Kulkarni, B.N.; Anantharama, V. Repercussions of COVID-19 pandemic on municipal solid waste management: Challenges and opportunities. Sci. Total Environ. 2020, 743, 140693. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.B.; Vanapalli, K.R.; Cheela, V.R.S.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour. Conserv. Recycl. 2020, 162, 105052. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2020, 750, 141514. [Google Scholar] [CrossRef] [PubMed]
- Zand, A.D.; Heir, A.V. Emerging challenges in urban waste management in Tehran, Iran during the COVID-19 pandemic. Resour. Conserv. Recycl. 2020, 162, 105051. [Google Scholar] [CrossRef]
- Bugge, M.M.; Fevolden, A.M.; Klitkou, A. Governance for system optimization and system change: The case of urban waste. Res. Policy 2019, 48, 1076–1090. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Widianto, A.; Hanafi, M. Cyber-physical System Enabled in Sustainable Waste Management 4.0: A Smart Waste Collection System for Indonesian Semi-Urban Cities. Procedia Manuf. 2020, 43, 535–542. [Google Scholar] [CrossRef]
- Lo Storto, C. Data on urban waste collection: The case of the Apulia region in Italy. Data Brief 2019, 25, 104380. [Google Scholar] [CrossRef]
- Budică, I.; Busu, O.V.; Dumitru, A.; Purcaru, M.-L. Waste management as commitment and duty of citizens. Pol. J. Manag. Stud. 2015, 11, 7–16. [Google Scholar]
- Camana, D.; Manzardo, A.; Toniolo, S.; Gallo, F.; Scipioni, A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustain. Prod. Consum. 2021, 27, 613–629. [Google Scholar] [CrossRef]
- Salmenperä, H.; Pitkänen, K.; Kautto, P.; Saikku, L. Critical factors for enhancing the circular economy in waste management. J. Clean. Prod. 2021, 280, 124339. [Google Scholar] [CrossRef]
- Basu, A.M.; Punjabi, S. Participation in solid waste management: Lessons from the Advanced Locality Management (ALM) programme of Mumbai. J. Urban Manag. 2020, 9, 93–103. [Google Scholar] [CrossRef]
- Mir, I.S.; Cheema, P.P.S.; Singh, S.P. Implementation analysis of solid waste management in Ludhiana city of Punjab. Environ. Chall. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Zeller, V.; Towa, E.; Degrez, M.; Achten, W.M.J. Urban waste flows and their potential for a circular economy model at city-region level. Waste Manag. 2019, 83, 83–94. [Google Scholar] [CrossRef]
- Tomić, T.; Schneider, D.R. Circular economy in waste management—Socio-economic effect of changes in waste management system structure. J. Environ. Manag. 2020, 267, 110564. [Google Scholar] [CrossRef] [PubMed]
- Asase, M.; Yanful, E.K.; Mensah, M.; Stanford, J.; Amponsah, S. Comparison of municipal solid waste management systems in Canada and Ghana: A case study of the cities of London, Ontario, and Kumasi, Ghana. Waste Manag. 2009, 29, 2779–2786. [Google Scholar] [CrossRef]
- Luttenberger, L.R. Waste management challenges in transition to circular economy—Case of Croatia. J. Clean. Prod. 2020, 256, 120495. [Google Scholar] [CrossRef]
- Sahimaa, O.; Mattinen, M.K.; Koskela, S.; Salo, M.; Sorvari, J.; Myllymaa, T.; Huuhtanen, J.; Seppälä, J. Towards zero climate emissions, zero waste, and one planet living—Testing the applicability of three indicators in Finnish cities. Sustain. Prod. Consum. 2017, 10, 121–132. [Google Scholar] [CrossRef]
- Castigliego, J.R.; Pollack, A.; Cleveland, C.J.; Walsh, M.J. Evaluating emissions reductions from zero waste strategies under dynamic conditions: A case study from Boston. Waste Manag. 2021, 126, 170–179. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A. The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two European cities. J. Clean. Prod. 2020, 244, 118490. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Feijoo, G.; Dias-Ferreira, C. Turning waste management into a carbon neutral activity: Practical demonstration in a medium-sized European city. Sci. Total Environ. 2020, 728, 138843. [Google Scholar] [CrossRef]
- Mena-Nieto, A.; Estay-Ossandon, C.; Pereirados Santos, S. Will the Balearics and the Canary Islands meet the European Union targets for municipal waste? A comparative study from 2000 to 2035. Sci. Total Environ. 2021, 783, 147081. [Google Scholar] [CrossRef]
- Ripa, M.; Fiorentino, G.; Vacca, V.; Ulgiati, S. The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). J. Clean. Prod. 2017, 142, 445–460. [Google Scholar] [CrossRef]
- Ochrona Środowiska. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 1 February 2021).
- Klatka, J.; Kuźniak, M. (Eds.) Gospodarowanie Odpadami Komunalnymi. Poradnik dla Gmin. Municipal Waste Management. A Guide for Communes; Wolters Kluwer Polska: Warszawa, Poland, 2012. [Google Scholar]
- Baltagi, B.H. Econometric Analysis of Panel Data, 4th ed.; John Wiley & Sons Ltd: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Sushil, D. Waste Management: A Systems Perspective. Ind. Manag. Data Syst. 1990, 90, 1–67. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Strzała, K. Panelowe Testy Stacjonarności–Możliwości i Ograniczenia [Panel Unit Root Tests–Potential and Limitations]. Przegląd Statystyczny 2009, 56, 56–73. [Google Scholar]
- Barbieri, L. Panel Unit Root Tests: A Review. Quad. Dip. Sci. Econ. E Soc. 2006, 43, 1–53, Università Cattolica Del Sacro Cuore Piacenza. [Google Scholar]
- Gengenbach, C.; Palm, F.C.; Urbain, J.-P. Panel Unit Root Tests in the Presence of Cross-Sectional Dependencies: Comparison and Implications for Modelling. Econom. Rev. 2009, 29, 111–145. [Google Scholar] [CrossRef] [Green Version]
- Hlouskova, J.; Wagner, M. The Performance of Panel Unit Root and Stationarity Tests: Results from a Large Scale Simulation Study. Econ. Work. Pap. 2005, ECO2005/05, 1–36, European University Institute. [Google Scholar] [CrossRef] [Green Version]
- Osińska, M.; Kośko, M.; Stempińska, J. Ekonometria Współczesna [Contemporary Econometrics]; Dom Organizatora: Toruń, Poland, 2007. [Google Scholar]
- Zero Waste Europe. Available online: https://www.teraz-srodowisko.pl/media/pdf/aktualnosci/2448-Parma-case-study.pdf (accessed on 10 February 2021).
- Warszawa. Wszytsko o odpadach. [Warsaw. All about Waste.]. Available online: https://warszawa19115.pl/wszystko-o-odpadach (accessed on 10 February 2021).
- Nasz Białystok jest eko. [Our Białystok is eco]. Available online: http://odpady.bialystok.pl/ (accessed on 10 February 2021).
- Gospodarowanie i wywóz śmieci—Nowe stawki i ważne terminy. [Management and Waste Disposal-New Rates and Important Deadlines]. Available online: https://www.wroclaw.pl/portal/odpady (accessed on 10 February 2021).
- Częstochowa. Środowisko. [Częstochowa. Environment.]. Available online: http://www.czestochowa.pl/page/311,odpady-komunalne.html (accessed on 10 February 2021).
- Kala, K.; Bolia, N.B.; Sushil, D. Effects of socio-economic factors on quantity and type of municipal solid waste. Manag. Environ. Qual. Int. J. 2020, 31, 877–894. [Google Scholar] [CrossRef]
- GUS Bank Danych Lokalnych. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 10 February 2021).
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Living Well, within the Limits of Our Planet. Available online: https://ec.europa.eu/environment/pubs/pdf/factsheets/7eap/en.pdf (accessed on 15 February 2021).
- Costa, I.M.; Dias, M.F. Evolution on the solid urban waste management in Brazil: A portrait of the Northeast Region. Energy Rep. 2020, 6, 878–888. [Google Scholar] [CrossRef]
- Um, N.; Kang, Y.-Y.; Kim, K.-H.; Shin, S.-K.; Lee, Y. Strategic environmental assessment for effective waste management in Korea: A review of the new policy framework. Waste Manag. 2018, 82, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Bertanza, G.; Mazzotti, S.; Gomez, F.H.; Nenci, M.; Vaccari, M.; Zetera, S.F. Implementation of circular economy in the management of municipal solid waste in an Italian medium-sized city: A 30-years lasting history. Waste Manag. 2021, 126, 821–831. [Google Scholar] [CrossRef]
- Westman, L.; McKenzie, J.; Burch, S.L. Political participation of businesses: A framework to understand contributions of SMEs to urban sustainability politics. Earth Syst. Gov. 2020, 3, 100044. [Google Scholar] [CrossRef]
- Westman, L.; Moores, E.; Burch, S.L. Bridging the governance divide: The role of SMEs in urban sustainability interventions. Cities 2021, 108, 102944. [Google Scholar] [CrossRef]
- Woodard, R. Waste Management in Small and Medium Enterprises (SMEs): Compliance with Duty of Care and implications for the Circular Economy. J. Clean. Prod. 2020, 278, 123770. [Google Scholar] [CrossRef]
- Hua, Y.; Dong, F.; Goodman, J. How to leverage the role of social capital in pro-environmental behavior: A case study of residents’ express waste recycling behavior in China. J. Clean. Prod. 2021, 280, 124376. [Google Scholar] [CrossRef]
- Brotosusilo, A.; Handayani, D. Dataset on waste management behaviors of urban citizens in large cities of Indonesia. Data Brief 2020, 32, 106053. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, L.; Zhang, Z. The impacts of social interaction-based factors on household waste-related behaviors. Waste Manag. 2020, 118, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Principato, L.; Mattia, G.; Di Leo, A.; Pratesi, C.A. The household wasteful behaviour framework: A systematic review of consumer food waste. Ind. Mark. Manag. 2020, in press. [Google Scholar] [CrossRef]
- Knickmeyer, D. Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas. J. Clean. Prod. 2019, 245, 118605. [Google Scholar] [CrossRef]
- Parajuly, K.; Fitzpatrick, C.; Muldoon, O.; Kuehr, R. Behavioral change for the circular economy: A review with focus on electronic waste management in the EU. Resour. Conserv. Recycl. X 2020, 6, 100035. [Google Scholar] [CrossRef]
- Murphy, S.; Pincetl, S. Zero waste in Los Angeles: Is the emperor wearing any clothes? Resour. Conserv. Recycl. 2013, 81, 40–51. [Google Scholar] [CrossRef]
- Zero Waste Pasadena 2040. Available online: https://ww5.cityofpasadena.net/public-works/street-maintenance-waste-management/recycling-resources/zero-waste-pasadena-2040/ (accessed on 18 February 2021).
- Alameda. Integrated Waste Program and Services. Available online: https://www.alamedaca.gov/Departments/Public-Works/Integrated-Waste-Program-and-Services (accessed on 18 February 2021).
- Santa Monica Public Works. Available online: https://www.smgov.net/departments/publicworks/recycling.aspx (accessed on 18 February 2021).
- Levoso Sánchez, A.; Gasol, C.M.; Martínez-Blanco, J.; Durany, X.G.; Lehmann, M.; Gaya, R.F. Methodological framework for the implementation of circular economy in urban systems. J. Clean. Prod. 2020, 248, 119227. [Google Scholar] [CrossRef]
Cities | Location | Area in km2 | Population per 1 km2 | Households Declaring that with the Present Income Position They “Make Ends Meet” (Data for Regions: NUTS 2) in % | Mass of Municipal Waste Generated per Capita | |
---|---|---|---|---|---|---|
With Difficulty | Easily | |||||
Warszawa | Central Poland | 517 | 3462 | 8.6 | 15.2 | 375 |
Wrocław | Southwest Poland | 293 | 2195 | 10.2 | 14.5 | 546 |
Białystok | Northeastern Poland | 102 | 2913 | 10.8 | 10.5 | 345 |
Częstochowa | South Poland | 160 | 1380 | 11.0 | 15.7 | 425 |
Katowice | South Poland | 165 | 1778 | 441 | ||
Szczecin | Northwest Poland | 301 | 1337 | 14.9 | 11.2 | 419 |
Variable | Method | Order of Integration Xt ~ I(0) | |
---|---|---|---|
Statistic | p | ||
WASTE_UA | Levin, Lin, and Chu t* | −7.51815 | 0.0000 |
Im, Pesaran, and Shin W-stat | −2.08448 | 0.0186 | |
ADF–Fisher chi-square | 53.7525 | 0.0094 | |
PP–Fisher chi-square | 57.1855 | 0.0040 | |
POPULATION | Levin, Lin, and Chu t* | −1.33957 | 0.0902 |
Im, Pesaran, and Shin W-stat | 2.06170 | 0.9804 | |
ADF–Fisher chi-square | 16.0879 | 0.9914 | |
PP–Fisher chi-square | 19.8945 | 0.9531 | |
OUT_TRANS | Levin, Lin, and Chu t* | −5.48660 | 0.0000 |
Im, Pesaran, and Shin W-stat | −1.85135 | 0.0321 | |
ADF–Fisher chi-square | 59.5104 | 0.0022 | |
PP–Fisher chi-square | 79.9880 | 0.0000 | |
OUT_LAND | Levin, Lin, and Chu t* | −26.5702 | 0.0000 |
Im, Pesaran, and Shin W-stat | −4.58090 | 0.0000 | |
ADF–Fisher chi-square | 63.1474 | 0.0008 | |
PP–Fisher chi-square | 79.7697 | 0.0000 | |
OUT _RECYC | Levin, Lin, and Chu t* | −4.80493 | 0.0000 |
Im, Pesaran, and Shin W-stat | −2.09083 | 0.0183 | |
ADF–Fisher chi-square | 52.1953 | 0.0135 | |
PP–Fisher chi-square | 84.7374 | 0.0000 | |
OUT_RECLA | Levin, Lin, and Chu t* | −3.33736 | 0.0004 |
Im, Pesaran, and Shin W-stat | −2.19875 | 0.0139 | |
ADF–Fisher chi-square | 54.4144 | 0.0080 | |
PP–Fisher chi-square | 83.7283 | 0.0000 |
Breusch–Pagan Test Statistic | Hausman Test Statistic | Combined Significance of Group Mean Inequalities | |||
---|---|---|---|---|---|
LM | p | H | p | F | p |
1.78121 | 0.182 | 2.50166 | 0.776245 | 0.551295 | 0.905874 |
Variable | Parameter Estimate | Standard Error | Student’s T Statistic | Significance Level p |
---|---|---|---|---|
const | −15.0912 | 7.19683 | −2.097 | 0.0378 ** |
POPULATION | 0.000302562 | 0.00000553 | 54.76 | <0.0001 *** |
OUT_TRANS | −0.000812666 | 0.000338637 | −2.400 | 0.0177 ** |
OUT_LAND | −0.000252417 | 0.000113712 | −2.220 | 0.0281 ** |
OUT_RECYC | −0.000267852 | 0.000193591 | −1.384 | 0.1687 |
OUT_RECLA | −0.00175231 | 0.000643580 | −2.723 | 0.0073 *** |
Mean of dependent variable: 402.2013 Standard deviation of dependent: variable 262.7011 Residual sum of squares: 257003.0 Standard error of residual: 43.15484 R2: 0.973958 Adjusted R2: 0.973014 F(5. 138): 1032.217 Significance level p for F test: 2.0 × 10−107 Log likelihood: −743.3933 Akaike criterion: 1498.787 Schwarz criterion: 1516.605 Hannan–Quinn criterion: 1506.027 Residual autocorrelation—rho1: −0.169435 DW statistic: 1.966563 |
Voivodeships | WASTE_UA | POPULATION | OUT_TRANS | OUT_LAND | OUT _RECYC | OUT_RECLA |
---|---|---|---|---|---|---|
Dolnośląskie | −1.0% | −0.3% | 17.2% | 0.6% | 14.7% | −19.7% |
Kujawsko-Pomorskie | −2.2% | −0.5% | 15.9% | −22.6% | −10.7% | −18.1% |
Lubelskie | −2.7% | −0.4% | 3.6% | 3.9% | −32.4% | 19.9% |
Lubuskie | −0.7% | 0.2% | 14.9% | −28.4% | - | −100.0% |
Łódzkie | −1.4% | −0.7% | −2.2% | −0.3% | −16.2% | −44.8% |
Małopolskie | −0.4% | 0.0% | 35.5% | −25.9% | −20.3% | −29.9% |
Mazowieckie | −1.3% | 0.4% | 36.5% | −9.2% | −4.4% | −28.1% |
Opolskie | −2.5% | −0.2% | 13.8% | 35.1% | −100.0% | −9.8% |
Podkarpackie | −0.4% | 0.0% | 1.7% | 13.4% | −15.0% | −100.0% |
Podlaskie | −1.4% | −0.1% | - | −2.8% | - | −100.0% |
Pomorskie | −2.6% | −0.1% | 13.1% | 6.9% | 46.6% | 32.2% |
Śląskie | −2.8% | −0.5% | 6.4% | −17.9% | −12.2% | 13.8% |
Świętokrzyskie | 0.6% | −0.3% | 9.9% | 38.4% | −100.0% | −100.0% |
Warmińsko-Mazurskie | 0.2% | −0.3% | −8.6% | −32.2% | −100.0% | −100.0% |
Wielkopolskie | −1.7% | −0.2% | 15.1% | 5.4% | −20.1% | −31.6% |
Zachodniopomorskie | −1.3% | −0.3% | 16.4% | −19.3% | 82.1% | −31.4% |
City | Activities |
---|---|
Katowice |
|
Warszawa |
|
Białystok |
|
Wrocław |
|
Częstochowa |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesjasz-Lech, A. Municipal Urban Waste Management—Challenges for Polish Cities in an Era of Circular Resource Management. Resources 2021, 10, 55. https://doi.org/10.3390/resources10060055
Mesjasz-Lech A. Municipal Urban Waste Management—Challenges for Polish Cities in an Era of Circular Resource Management. Resources. 2021; 10(6):55. https://doi.org/10.3390/resources10060055
Chicago/Turabian StyleMesjasz-Lech, Agata. 2021. "Municipal Urban Waste Management—Challenges for Polish Cities in an Era of Circular Resource Management" Resources 10, no. 6: 55. https://doi.org/10.3390/resources10060055
APA StyleMesjasz-Lech, A. (2021). Municipal Urban Waste Management—Challenges for Polish Cities in an Era of Circular Resource Management. Resources, 10(6), 55. https://doi.org/10.3390/resources10060055