Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield
Abstract
1. Introduction
2. Methodology
2.1. Site
2.2. Experimental Design
2.3. Soil and Compost Characterization
2.4. Data Collection, Calculations, and Analysis
3. Results
3.1. Linking P Availability and Maize Yield
3.2. Available P in the Soil
3.3. PUE
4. Discussion
4.1. Effects of Available P on Maize Yield
4.2. Effects of P Sources on Soil Available P
4.3. Effects of P Sources on PUE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horrocks, A.; Curtin, D.; Tregurtha, C.; Meenken, E. Municipal Compost as a Nutrient Source for Organic Crop Production in New Zealand. Agronomy 2016, 6, 35. [Google Scholar] [CrossRef]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil Phosphorus Availability With Alkaline/Calcareous Soil. In Western Nutrient Management Conference; University of Idaho: Idaho Falls, ID, USA, 2005; pp. 88–93. [Google Scholar]
- Mullins, G. Phosphorus, Agriculture & The Environment; Virginia Cooperative Extension; Virginia State University: Petersburg, VA, USA, 2009. [Google Scholar]
- Rosemarin, A.; Ekane, N. The governance gap surrounding phosphorus. Nutr. Cycl. Agroecosyst. 2016, 104, 265–279. [Google Scholar] [CrossRef]
- Schröder, L.; Cordell, D.; Smit, A.L.; Rosemarin, A. Sustainable Use of Phosphorus; Plant Research International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Walan, P. Modeling of Peak Phosphorus: A Study of Bottlenecks and Implications. UPTEC 2013, 13, 178–187. [Google Scholar]
- Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate rock production and depletion: Regional disaggregated modelling and global implications. Resour. Conserv. Recycl. 2014, 93, 178–187. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2020; USGS: Reston, VA, USA, 2020. [Google Scholar]
- USGS. Mineral Commodity Summaries 2010; USGS: Reston, VA, USA, 2010. [Google Scholar]
- Haneklaus, N.H. Unconventional Uranium Resources From Phosphates. Encycl. Nucl. Energy 2021, 4, 1–7. [Google Scholar]
- Bationo, A.; Kumar, K.A. Phosphorus use efficiency as related to sources of P fertilizers, rainfall, soil, crop management, and genotypes in the West African semi-arid tropics. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities, 1st ed.; Adu-Gyamfi, J., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2002; pp. 145–154. [Google Scholar]
- Rollett, A.; Sylvester-Bradley, R.; Bhogal, A.; Ginsburg, D.; Griffin, S.; Withers, P. Cost-Effective Phosphorus Management on UK Arable Farms Apparent Soil Phosphate Requirements; Agriculture and Horticulture Development Board (AHDB): London, UK, 2017. [Google Scholar]
- Coutinho, J.; Arrobas, M.; Rodrigues, O. Effect of composted sewage sludge amendment on soil nitrogen and phosphorus availability. Commun. Soil Sci. Plant Anal. 1997, 28, 1845–1857. [Google Scholar] [CrossRef]
- Begum, A. Evaluation of Municipal sewage sludge vermicompost on two Cultivars of Tomato (Lycopersicon esculentum) plants. Int. J. ChemTech Res. 2011, 3, 1184–1188. [Google Scholar]
- Giannakis, G.V.; Kourgialas, N.N.; Paranychianakis, N.V.; Nikolaidis, N.P.; Kalogerakis, N. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Sci. Util. 2014, 22, 116–131. [Google Scholar] [CrossRef]
- Adamtey, N.; Cofie, O.; Ofosu-budu, K.G.; Ofosu-anim, J.; Laryea, K.B.; Forster, D. Effect of N-enriched co-compost on transpiration efficiency and water-use efficiency of maize (Zea mays L.) under controlled irrigation. Agric. Water Manag. 2010, 97, 995–1005. [Google Scholar] [CrossRef]
- Amoah, P.; Adamtey, N.; Cofie, O. Effect of Urine, Poultry Manure, and Dewatered Cabbage in Accra, Ghana. Resour. Artic. 2017, 6, 19. [Google Scholar] [CrossRef]
- Komiyama, T.; Ito, T.; Saigusa, M. Effects of phosphorus-based application of animal manure compost on the yield of silage corn and on soil phosphorus accumulation in an upland Andosol in Japan. Soil Sci. Plant Nutr. 2014, 60, 863–873. [Google Scholar] [CrossRef]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long- term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Horta, C.; Roboredo, M.; Carneiro, J.P.; Duarte, A.C.; Torrent, J.; Sharpley, A. Organic amendments as a source of phosphorus: Agronomic and environmental impact of different animal manures applied to an acid soil. Arch. Agron. Soil Sci. 2018, 64, 257–271. [Google Scholar] [CrossRef]
- Case, S.D.C.; Jensen, L.S. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy. Environ. Technol. 2019, 40, 701–715. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Mishra, R.P.; Shukla, A.K. Yields, Soil Health and Farm Profits under a Rice-Wheat System: Long-Term Effect of Fertilizers and Organic Manures Applied Alone and in Combination. Agron. Artic. 2019, 9, 1. [Google Scholar] [CrossRef]
- Houben, D.; Michel, E.; Nobile, C.; Lambers, H.; Kandeler, E.; Faucon, M.P. Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Appl. Soil Ecol. 2019, 137, 178–186. [Google Scholar] [CrossRef]
- Jamil, M.; Qasim, M.; Umar, M. Utilization of sewage sludge as organic fertiliser in sustainable agriculture. J. Appl. Sci. 2006, 6, 531–535. [Google Scholar] [CrossRef]
- Römer, W.; Schilling, G. Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 1986, 91, 221–229. [Google Scholar] [CrossRef]
- Dijkshoorn, J.A.; Huting, J.; Kempen, B. Soil and Terrain Database of the Republic of Malawi; ISRIC-World Soil Information: Wageningen, The Netherlands, 2016. [Google Scholar]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Method for chemical analysis of soils. N. Zeal. Soil Bur. Sci. Rep. 1987, 80, 1–10. [Google Scholar]
- Ashworth, J.; Keyes, D.; Kirk, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis hydrometer method for particle size analysis. Commun. Soil Sci. Plant Anal. ISSN 2007, 32, 633–642. [Google Scholar] [CrossRef]
- GLOSOLAN. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method; GLOSOLAN: Rome, Italy, 2019. [Google Scholar]
- Murphy, J.; Riley, J. Determination single solution method for the in natural. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; SACRED Africa: Nairobi, Kenya, 2002. [Google Scholar]
- Jones, C.; Olson-rutz, K.; Dinkins, C.P. Nutrient Uptake Timing by Crops; Montana State University: Bozeman, MT, USA, 2015. [Google Scholar]
- Kahiluoto, H.; Kuisma, M.; Ketoja, E.; Salo, T.; Heikkinen, J. Phosphorus in Manure and Sewage Sludge More Recyclable than in Soluble Inorganic Fertilizer. Environ. Sci. Technol. 2015, 49, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, B.; Demers, I.; Ziadi, N.; Chantigny, M.H.; Parent, L.E.; Forge, T.A.; Larney, F.J.; Buckley, K.E. Forms of phosphorus in composts and in compost amended soils following incubation. Can. J. Soil Sci. 2012, 92, 711–721. [Google Scholar] [CrossRef]
- Prasad, M. A Literature Review on the Availability of Phosphorus from Compost in Relation to the Nitrate Regulations SI 378 of 2006; Environmental Protection Agency: Wexford, Ireland, 2013.
- Zhang, W.; Li, H.; Zhang, J.; Shen, J.; Brown, H.; Wang, E. Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar. Crop J. 2021, 10, 254–261. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. Macronutrient Management Effects on Nutrient Accumulation, Partitioning, Remobilization, and Yield of Hybrid Maize Cultivars. Plant Sci. 2020, 11, 01307. [Google Scholar] [CrossRef]
Parameter | Makoka | Bvumbwe |
---|---|---|
Available P (mg/kg) | 23.86 ± 4.20 | 15.92 ± 3.35 |
pH(water) | 4.97 ± 0.12 | 4.73 ± 0.35 |
Al (g/kg) | 43.66 ± 4.48 | 68.45 ± 5.44 |
Fe (g/kg) | 43.5 ± 10.80 | 81.81 ± 4.72 |
Organic matter (%) | 0.92 ± 0.11 | 1.17 ± 0.06 |
Ca (mg/kg) | 597.97 ± 112.0 | 545.45 ± 81.23 |
K (mg/kg) | 692.94 ± 155.5 | 659.18 ± 65.67 |
Mg (mg/kg) | 930.52 ± 88.64 | 1002.49 ± 111.3 |
Silt (%) | 7.33 ± 1.03 | 10.00 ± 1.27 |
Clay (%) | 21.33 ± 3.72 | 42.00 ± 2.83 |
Sand (%) | 71.30 ± 3.27 | 48.00 ± 3.35 |
Parameter | Market Waste-Faecal Sludge Compost | Market Waste Compost |
---|---|---|
pH(water) | 7.20 ± 0.07 | 8.82 ± 0.09 |
Organic matter (%) | 14.86 ± 0.87 | 13.17 ± 1.23 |
Total P (mg/kg) | 4906.76 ± 384.80 | 3522.22 ± 430.10 |
Available P (mg/kg) | 132.69 ± 9.85 | 113.68 ± 7.62 |
Ca (g/kg) | 11.60 ± 0.46 | 15.20 ± 2.49 |
K (g/kg) | 4.64 ± 0.62 | 5.24 ± 0.61 |
Mg (g/kg) | 4.21 ± 0.52 | 3.80 ± 0.18 |
Zn (mg/kg) | 447.61 ± 35.7 | 335.72 ± 59.48 |
Cd (mg/kg) | 0.31 ± 0.03 | 0.23 ± 0.07 |
Parameters | Column 1 | Column 2 | Column 3 |
---|---|---|---|
Constant | 3945 *** (227) | 3331 *** (204) | 3361 *** (221) |
Site (Makoka) | −2099 *** (188) | −2275 *** (205) | −2339 *** (225) |
Season (1) | 481 ** (182) | 231 (195) | 357 (196) |
Available P at week 3 (mg/kg) | 31 *** (5) | ||
Available P at week 6 (mg/kg) | 37 *** (7) | ||
Available P at week 9 (mg/kg) | 38 *** (8) | ||
R2 | 0.50 | 0.49 | 0.46 |
N | 144 | 144 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnthambala, F.; Tilley, E.; Tyrrel, S.; Sakrabani, R. Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources 2022, 11, 86. https://doi.org/10.3390/resources11100086
Mnthambala F, Tilley E, Tyrrel S, Sakrabani R. Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources. 2022; 11(10):86. https://doi.org/10.3390/resources11100086
Chicago/Turabian StyleMnthambala, Frank, Elizabeth Tilley, Sean Tyrrel, and Ruben Sakrabani. 2022. "Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield" Resources 11, no. 10: 86. https://doi.org/10.3390/resources11100086
APA StyleMnthambala, F., Tilley, E., Tyrrel, S., & Sakrabani, R. (2022). Effect of Various Organic Fertilisers on Phosphorus Mineralisation, Use Efficiency and Maize Yield. Resources, 11(10), 86. https://doi.org/10.3390/resources11100086