Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Hydrochars
2.2. Preparation of Activated Hydrochars
2.3. Characterization of Hydrochar and Activated Hydrochars
2.4. Adsorption Tests
3. Results
3.1. Characterization of the Hydrochars and Activated Hydrochars
3.2. Adsorption of Sulfamethoxazole
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ischia, G.; Fiori, L. Hydrothermal carbonization of organic waste and biomass: A review on process, reactor, and plant modelling. Waste Biomass Valorization 2021, 12, 2797–2824. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Kundu, S.; Halder, P.; Patel, S.; Hakeem, I.G.; Paz-Ferreiro, J.; Madapusi, S.; Surapaneni, A.; Shah, K. Wet organic waste treatment via hydrothermal processing: A critical review. Chemosphere 2021, 279, 130557. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Qian, J.; Zhao, Y.; Wang, T.; Zhai, Y. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Bioresour. Technol. 2021, 324, 124686. [Google Scholar] [CrossRef]
- Mau, V.; Arye, G.; Gross, A. Poultry litter hydrochar as an amendment for sandy soils. J. Environ. Manag. 2020, 271, 110959. [Google Scholar] [CrossRef]
- Bardhan, M.; Novera, T.M.; Tabassum, M.; Islam, M.A.; Islam, M.A.; Hameed, B.H. Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: A review. J. Clean. Prod. 2021, 298, 126734. [Google Scholar] [CrossRef]
- Wu, L.; Wei, W.; Wang, D.; Ni, B.J. Improving nutrients removal and energy recovery from wastes using hydrochar. Sci. Total Environ. 2021, 783, 146980. [Google Scholar] [CrossRef]
- Lang, J.; Matějová, L.; Cuentas-Gallegos, A.K.; Lobato-Peralta, D.R.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Mondal, D.; Keiski, R.L.; Cruz, G.J.F. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. J. Environ. Chem. Eng. 2021, 9, 105979. [Google Scholar] [CrossRef]
- Hou, Z.; Tao, Y.; Bai, T.; Liang, Y.; Huang, S.; Cai, J. Efficient Rhodamine B removal by N-doped hierarchical carbons obtained from KOH activation and urea-oxidation of glucose hydrochar. J. Environ. Chem. Eng. 2021, 9, 105757. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, L.; Du, G.; Zhu, M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J. Colloid Interface Sci. 2021, 593, 390–407. [Google Scholar] [CrossRef]
- Zubbri, N.A.; Mohamed, A.R.; Lahijani, P.; Mohammadi, M. Low temperature CO2 capture on biomass-derived KOH-activated hydrochar established through hydrothermal carbonization with water-soaking pre-treatment. J. Environ. Chem. Eng. 2021, 9, 105074. [Google Scholar] [CrossRef]
- Diao, Y.; Walawender, W.P.; Fan, L.T. Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour. Technol. 2002, 81, 45–52. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Adewakun, E.; Abhi, T.D.; Pradhan, R.; Dutta, A. Hydrothermal carbonization valorization as an alternative application for corn bio-ethanol by-products. J. Environ. Chem. Eng. 2021, 9, 105431. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. J. Carbon Res. 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [Google Scholar] [CrossRef]
- Yaah, V.B.K.; Zbair, M.; de Oliveira, S.B.; Ojala, S. Hydrochar-derived adsorbent for the removal of diclofenac from aqueous solution. Nanotechnol. Environ. Eng. 2021, 6, 3. [Google Scholar] [CrossRef]
- Baccile, N.; Laurent, G.; Coelho, C.; Babonneau, F.; Zhao, L.; Titirici, M.M. Structural insights on nitrogen-containing hydrothermal carbon using solid-state magic angle spinning 13C and 15N nuclear magnetic resonance. J. Phys. Chem. C 2011, 115, 8976–8982. [Google Scholar] [CrossRef] [Green Version]
- Falco, C.; Sevilla, M.; White, R.J.; Rothe, R.; Titirici, M.M. Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem 2012, 5, 1834–1840. [Google Scholar] [CrossRef] [Green Version]
- Latham, K.G.; Jambu, G.; Joseph, S.D.; Donne, S.W. Nitrogen doping of hydrochars produced hydrothermal treatment of sucrose in H2O, H2SO4, and NaOH. ACS Sustain. Chem. Eng. 2014, 2, 755–764. [Google Scholar] [CrossRef]
- Latham, K.G.; Dose, W.M.; Allen, J.A.; Donne, S.W. Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon 2018, 128, 179–190. [Google Scholar] [CrossRef]
- Roldan, L.; Marco, Y.; García-Bordeje, E. Bio-sourced mesoporous carbon doped with heteroatoms (N,S) synthesised using one-step hydrothermal process for water remediation. Microporous Mesoporous Mater. 2016, 222, 55–62. [Google Scholar] [CrossRef]
- Chen, P.; Yang, J.J.; Li, S.S.; Wang, Z.; Xiao, T.Y.; Qian, Y.H.; Yu, S.H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013, 2, 249–256. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, G.; Wang, M.; Li, J.; Lu, T.; Pan, L. Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 2017, 116, 686–694. [Google Scholar] [CrossRef]
- Horikawa, T.; Sakao, N.; Sekida, T.; Hayashi, J.; Do, D.D.; Katoh, M. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 2012, 50, 1833–1842. [Google Scholar] [CrossRef]
- Gu, J.M.; Kim, W.S.; Hwang, Y.K.; Huh, S. Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 2013, 56, 208–217. [Google Scholar] [CrossRef]
- Bai, F.; Xia, Y.; Chen, B.; Su, H.; Zhu, Y. Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon 2014, 79, 213–226. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.L.; Zhang, J.Y.; Tao, D.J.; Liu, F.; Dai, S. Simultaneous activation and N-doping of hydrothermal carbons by NaNH2: An effective approach to CO2 adsorbents. J. CO2 Util. 2019, 33, 405–412. [Google Scholar] [CrossRef]
- Datos Mensuales de Producción, Movimiento y Existencias (AICA), Ministerio de Agricultura, Pesca y Alimentación. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Datos_produccion_movimiento_existencias_AICA.aspx (accessed on 28 February 2022).
- Rukavina, H.; Furlan, M.; Karampinis, E.; Margaritis, N.; Panagiotis, V.; Bau, L.; Francescato, V.; Almeida, T.; Figo, S.; Scap, S.; et al. Developing the Sustainable Market of Residential Mediterranean Solid Biofuels. BIOmasudplus. 2017. Available online: https://cordis.europa.eu/project/id/691763 (accessed on 23 April 2022).
- Mediavilla, I.; Barro, R.; Borjabad, E.; Peña, D.; Fernández, M.J. Quality of olive stone as a fuel: Influence of oil content on combustion process. Renew. Energy 2020, 160, 374–384. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Dentzer, J.; Gadiou, R.; Ouederni, A. Evaluation of activated carbons based on olive stones as catalysts during hydrogen production by thermocatalytic decomposition of methane. Int. J. Hydrogen Energy 2017, 42, 8712–8720. [Google Scholar] [CrossRef]
- Bolek, S. Olive stone powder: A potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. Innov. Food Sci. Emerg. Technol. 2020, 64, 102423. [Google Scholar] [CrossRef]
- Moussa, M.; Bader, N.; Querejeta, N.; Durán, I.; Pevida, C.; Ouederni, A. Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions. J. Environ. Chem. Eng. 2017, 5, 1628–1637. [Google Scholar] [CrossRef] [Green Version]
- Moussa, M.; Bader, N.; Querejeta, N.; Duran, I.; Pevida, C.; Ouederni, A. CO2 adsorption on activated carbon based olive stone: A comparison of Langmuir and Freundlich models. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (EMCEI 2017); Springer: Berlin/Heidelberg, Germany, 2018; pp. 1099–1100. [Google Scholar] [CrossRef]
- Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. C. R. Chim. 2015, 18, 88–99. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; Lostado-Lorza, R.; Somovilla-Gomez, F.; Escribano-García, R. Effective use of activated carbon from olive stone waste in the biosorption removal of Fe (III) ions from aqueous solutions. J. Clean. Prod. 2021, 294, 126332. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Sweleh, A.O. Optimizing textile dye removal by activated carbon prepared from olive stones. Environ. Technol. Innov. 2013, 16, 100488. [Google Scholar] [CrossRef]
- Larous, S.; Meniai, A.H. Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 2016, 41, 10380–10390. [Google Scholar] [CrossRef]
- Limousy, L.; Ghouma, I.; Ouederni, A.; Jeguirim, M. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ. Sci. Pollut. Res. 2017, 24, 9993–10004. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K.; Atkinson, J.D.; Yan, X.; Li, X.; Rood, M.J.; Yan, Z. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. J. Hazard. Mater. 2012, 229–230, 183–191. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 2015, 148, 246–254. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.K.; Sharma, G.; Guo, C.; Vo, D.V.N.; Iqbal, J.; Naushad, M.; Stadler, F.J. Silicate glass matrix@Cu2O/Cu2V2O7 p-n heterojunction for enhanced visible light photo-degradation of sulfamethoxazole: High charge separation and interfacial transfer. J. Hazard. Mater. 2021, 402, 123790. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, X.; Chen, B.; Ma, J.; Niu, X.; Zhang, D.; Lin, Z.; Fu, M.; Zhou, S. Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar. J. Clean. Prod. 2020, 256, 120662. [Google Scholar] [CrossRef]
- Villamil, J.A.; Diaz, E.; de la Rubia, M.A.; Mohedano, A.F. Potential use of waste activated sludge hydrothermally treated as a renewable fuel or activated carbon precursor. Molecules 2020, 25, 3534. [Google Scholar] [CrossRef] [PubMed]
- Diaz, E.; Manzano, F.J.; Villamil, J.; Rodriguez, J.J.; Mohedano, A.F. Low-cost activated grape seed-derived hydrochar through hydrothermal carbonization and chemical activation for sulfamethoxazole adsorption. Appl. Sci. 2019, 9, 5127. [Google Scholar] [CrossRef] [Green Version]
- Reguyal, F.; Sarmah, A.K. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol. Sci. Total Environ. 2018, 628–629, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Sornalingam, K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017, 311, 348–358. [Google Scholar] [CrossRef]
- Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014, 186, 187–194. [Google Scholar] [CrossRef]
- Bedia, J.; Monsalvo, V.M.; Rodriguez, J.J.; Mohedano, A.F. Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO. Chem. Eng. J. 2017, 318, 224–230. [Google Scholar] [CrossRef]
- Sevilla, M.; Ferrero, G.A.; Fuertes, A.B. Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon 2017, 114, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Rosas, J.M.; Bedia, J.; Rodríguez-Mirasol, J.; Cordero, T. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 2009, 88, 19–26. [Google Scholar] [CrossRef]
- Rey, A.; Zazo, J.A.; Casas, J.A.; Bahamonde, A.; Rodriguez, J.J. Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Appl. Catal. A 2011, 402, 146–155. [Google Scholar] [CrossRef]
- Çalışkan, E.; Göktürk, S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep. Sci. Technol. 2010, 45, 244–255. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; González, J.F.; Laginhas, C.; Titirici, M.M. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Dorge, S.; Limousy, L.; Ghimbeu, C.M.; Ouederni, A. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. C. R. Chim. 2015, 18, 63–74. [Google Scholar] [CrossRef]
- Jeder, A.; Sanchez-Sanchez, A.; Gadonneix, P.; Masson, E.; Ouederni, A.; Celzard, A.; Fierro, V. The severity factor as a useful tool for producing hydrochars and derived carbon materials. Environ. Sci. Pollut. Res. 2018, 25, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Trubetskaya, A.; Grams, J.; Leahy, J.J.; Johnson, R.; Gallagher, P.; Monaghan, R.F.D.; Kwapinska, M. The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction. Renew. Energy 2020, 160, 998–1011. [Google Scholar] [CrossRef]
- Magalhaes, D.; Gürel, K.; Matsakas, L.; Christakopoulos, P.; Pisano, I.; Leahy, J.J.; Kazanç, F.; Trubetskaya, A. Prediction of yields and composition of char from fast pyrolysis of commercial lignocellulosic materials, organosolv fractionated and torrefied olive stones. Fuel 2021, 289, 119862. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Liu, Z.; Jain, A.; Srinivasan, M.P.; Balasubramanian, R. Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel 2013, 111, 201–210. [Google Scholar] [CrossRef]
- Wiedner, K.; Naisse, C.; Rumpel, C.; Pozzi, A.; Wieczorek, P.; Glaser, B. Chemical modification of biomass residues during hydrothermal carbonization—What makes the difference, temperature or feedstock? Org. Geochem. 2013, 54, 91–100. [Google Scholar] [CrossRef]
- Puig-Gamero, M.; Esteban-Arranz, A.; Sanchez-Silva, L.; Sánchez, P. Obtaining activated biochar from olive stone using a bench scale high-pressure thermobalance. J. Environ. Chem. Eng. 2021, 9, 105374. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Castello, D.; Fiori, L. Granular activated carbon from grape seeds hydrothermal char. Appl. Sci. 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Chen, J.; Peng, H.; Leng, S.; Li, H.; Qu, W.; Hu, Y.; Li, H.; Jiang, S.; Zhou, W.; et al. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 2021, 291, 120128. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment. Fundamentals, Processes, and Modelling; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012; ISBN 978-3-11-024022-1. [Google Scholar]
- Ferrentino, R.; Ceccato, R.; Marchetti, V.; Andreottola, G.; Fiori, L. Sewage sludge hydrochar: An option for removal of methylene blue from wastewater. Appl. Sci. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Rajpoot, M.; Mishra, D.D. Studies on the correlation between structure and adsorption of sulfonamide compounds. Colloids Surf. A 2000, 168, 193–205. [Google Scholar] [CrossRef]
- Tonucci, M.C.; Gurgel, L.V.A.; de Aquino, S.F. Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Ind. Crops Prod. 2015, 74, 111–121. [Google Scholar] [CrossRef]
Biomass Precursor | Adsorbent Preparation | Adsorbent Characteristics | Adsorption Conditions/Parameters | Ref. |
---|---|---|---|---|
Bagasse | Magnetic biochar prepared by FeCl3 impregnation and pyrolysis at 800 °C | C = 73.8% O = 21.8% N = 0.96% pHPZC = 2.8 ABET = 606 m2 g−1 | SMX0 = 50 mg L−1 W = 0.2 g L−1 T = 25 °C pH = 5 qL = 205 mg g−1 | [43] |
Dewatered waste activated sludge | Hydrothermal carbonization at 208 °C and KOH activation at 850 °C | C = 34.9% N = 5.8% pHslurry = 5.5 ABET = 832 m2 g−1 | SMX0 = 25–175 mg L−1 W = 0.25 g L−1 T = 20 °C pH = 4.6 qL = 423 mg g−1 | [44] |
Grape Seeds | Hydrothermal carbonization at 220 °C and KOH activation at 750 °C | C = 73.3% pHslurry = 7.6 ABET = 2194 m2 g−1 | SMX0 = 25–150 mg L−1 W = 0.25 g L−1 T = 20 °C pH = 4.6 qL = 650 mg g−1 | [45] |
Pine sawdust | Magnetic biochar prepared by FeCl2, KOH and KNO3 impregnation at 90 °C | C = 55.8% O = 14.2% N < 0.3% pHPZC = 9.5 ABET = 126 m2 g−1 | SMX0 = 0.5–9.0 mg L−1 W = 20 mg L−1 T = 25 °C pH = 4.5 qL = 19.1 mg g−1 | [46] |
Bamboo | Thermal treatment (N2) at 380 °C and 2.5–10 psi followed by an activation with H3PO4 at 600 °C | C = 52.0% O = 39.5% ABET = 1.12 m2 g−1 | SMX0 = 10 mg L−1 W = 100 mg L−1 T = 25 °C pH = 3.3 qL = 88.1 mg g−1 | [47] |
Pine wood | Carbonization at 500 °C | C = 87.6% O = 12.2% ABET = 328 m2 g−1 | W = 0.45–0.68 mg L−1 Room temperature pH = 6 KF =131 n = 0.24 | [48] |
Sample | Biomass/ Water (wt.%) | Proximate Analysis (wt.% Dry Basis) | Ultimate Analysis (wt.% Dry Basis) | ABET (m2 g−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Volatile Matter | Fixed Carbon | Ash | C | H | N | S | O * | |||
OS | - | 77.2 | 22.4 | 0.4 | 49.9 | 5.8 | 0.1 | 0.1 | 43.7 | - |
HC | 30 | 52.5 | 47.1 | 0.4 | 66.7 | 4.8 | 0.2 | 0.0 | 27.9 | 18 |
40 | 57.0 | 42.2 | 0.8 | 67.8 | 5.0 | 0.2 | 0.1 | 26.1 | 17 | |
50 | 56.1 | 43.3 | 0.6 | 67.8 | 4.9 | 0.2 | 0.0 | 26.5 | 15 | |
HCN2 | 50 | 64.7 | 35.0 | 0.3 | 54.0 | 4.8 | 7.7 | 6.4 | 26.8 | 5 |
HCN3 | 59.9 | 39.5 | 0.6 | 62.2 | 4.7 | 5.6 | 3.2 | 23.7 | 10 | |
HCN5 | 60.5 | 39.1 | 0.4 | 63.9 | 4.9 | 4.9 | 1.4 | 24.5 | 4 |
Sample | C * (%) | N * (%) | Ash * (%) | ABET (m2 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | pHslurry |
---|---|---|---|---|---|---|---|
HC-FeCl3 | 47.0 | 0.3 | 10.0 | 383 | 0.18 | 0.07 | 6.5 |
HC-H3PO4 | 70.2 | 0.2 | 9.1 | 1155 | 0.50 | 0.20 | 1.8 |
HC-KOH | 74.4 | 0.1 | 17.2 | 2122 | 0.96 | 0.14 | 8.0 |
HCN2-KOH | 49.6 | 0.99 | 31.7 | 1247 | 0.13 | 0.60 | 2.3 |
HCN3-KOH | 40.2 | 0.63 | 29.1 | 1116 | 0.21 | 0.55 | 2.8 |
HCN5-KOH | 59.2 | 1.52 | 25.1 | 2048 | 0.86 | 1.24 | 4.2 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qL (mg g−1) | KL (L mg−1) | R2 | KF (mg g−1)·(L mg−1)(1/n) | n | R2 | |
Commercial AC | 221.8 ± 9.2 | 0.296 ± 0.071 | 0.951 | 83.8 ± 12.1 | 0.220 ± 0.036 | 0.938 |
HC-FeCl3 | 151.2 ± 7.6 | 0.419 ± 0.187 | 0.673 | 69.9 ± 5.7 | 0.174 ± 0.019 | 0.945 |
HC-H3PO4 | 324.4 ± 7.4 | 0.078 ± 0.007 | 0.992 | 66.3 ± 10.4 | 0.337 ± 0.039 | 0.947 |
HC-KOH | 758.7 ± 55.9 | 1.236 ± 0.630 | 0.855 | 338.3 ± 18.3 | 0.209 ± 0.014 | 0.987 |
HCN2-KOH | 524.6 ± 34.2 | 0.579 ± 0.290 | 0.830 | 226.2 ± 16.8 | 0.186 ± 0.017 | 0.975 |
HCN3-KOH | 429.4 ± 29.3 | 0.862 ± 0.464 | 0.829 | 184.8 ± 11.5 | 0.187 ± 0.014 | 0.982 |
HCN5-KOH | 695.4 ± 48.9 | 0.397 ± 0.185 | 0.878 | 278.9 ± 14.6 | 0.209 ± 0.013 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, E.; Sanchis, I.; Coronella, C.J.; Mohedano, A.F. Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption. Resources 2022, 11, 43. https://doi.org/10.3390/resources11050043
Diaz E, Sanchis I, Coronella CJ, Mohedano AF. Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption. Resources. 2022; 11(5):43. https://doi.org/10.3390/resources11050043
Chicago/Turabian StyleDiaz, Elena, Ines Sanchis, Charles J. Coronella, and Angel F. Mohedano. 2022. "Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption" Resources 11, no. 5: 43. https://doi.org/10.3390/resources11050043
APA StyleDiaz, E., Sanchis, I., Coronella, C. J., & Mohedano, A. F. (2022). Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption. Resources, 11(5), 43. https://doi.org/10.3390/resources11050043