Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Sample
2.2. Surimi Production and Analysis
2.2.1. Measurement of Yield, Moisture, and pH
2.2.2. Measurement of Reactive Sulfhydryl (SH), Ca2+-ATPase Activity, and Trichloroacetic Acid (TCA) Soluble Peptide
2.2.3. Measurement of Protein Hydrophobicity
2.2.4. Measurement of Myoglobin, Non-Heme Iron, and Lipid Contents
2.3. Gel Preparation
2.4. Gel Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Yield
3.2. Biochemical Features
3.2.1. pH
3.2.2. Reactive SH, Ca2+-ATPase Activity, and Surface Hydrophobicity
3.2.3. TCA-Soluble Peptide
3.3. Myoglobin, Non-Heme Iron, and Lipid Contents
3.4. Gelling Properties
3.4.1. Gel Strength, Expressible Drip, and Whiteness
3.4.2. Microstructure
3.4.3. Lipid Oxidation and Fishy Odor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eu, A.; Siok, C.; Biñas, J.B. Issues and challenges in sustainable development of fisheries and aquaculture of the Southeast Asian Region: Utilization of fishery resources. Southeast Asian State Fish. Aquac. 2022, 2022, 113–117. [Google Scholar]
- Jaziri, A.A.; Shapawi, R.; Mohd Mokhtar, R.A.; Md. Noordin, W.N.; Huda, N. Tropical marine fish surimi by-products: Utilisation and potential as functional food application. Food Rev. Int. 2023, 39, 3455–3480. [Google Scholar] [CrossRef]
- Wasinnitiwong, N.; Tavakoli, S.; Benjakul, S.; Hong, H. Improving the gel quality of Threadfin bream (Nemipterus spp.) surimi using salted duck egg white powder. Foods 2022, 11, 3350. [Google Scholar] [CrossRef]
- Yingchutrakul, M.; Wasinnitiwong, N.; Benjakul, S.; Singh, A.; Zheng, Y.; Mubango, E.; Luo, Y.; Tan, Y.; Hong, H. Asian carp, an alternative material for surimi production: Progress and future. Foods 2022, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.; Panpipat, W.; Benjakul, S. Physicochemical properties and gel-forming ability of surimi from three species of mackerel caught in Southern Thailand. Food Chem. 2010, 121, 85–92. [Google Scholar] [CrossRef]
- Meng, L.; Jiao, X.; Yan, B.; Huang, J.; Zhao, J.; Zhang, H.; Fan, D. Effect of fish mince size on physicochemical and gelling properties of silver carp (Hypophthalmichthys molitrix) surimi gel. LWT 2021, 149, 111912. [Google Scholar] [CrossRef]
- Phetsang, H.; Panpipat, W.; Undeland, I.; Panya, A.; Phonsatta, N.; Chaijan, M. Comparative quality and volatilomic characterisation of unwashed mince, surimi, and pH-shift-processed protein isolates from farm-raised hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem. 2021, 364, 130365. [Google Scholar] [CrossRef]
- Thongkam, P.; Chaijan, M.; Cheong, L.Z.; Panpipat, W. Impact of washing with antioxidant-infused soda–saline solution on gel functionality of mackerel (Auxis thazard) surimi. Foods 2023, 12, 3178. [Google Scholar] [CrossRef]
- Wongwichian, C.; Klomklao, S.; Panpipat, W.; Benjakul, S.; Chaijan, M. Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage. Food Chem. 2015, 174, 279–285. [Google Scholar] [CrossRef]
- Singh, A.; Mittal, A.; Benjakul, S. Undesirable discoloration in edible fish muscle: Impact of indigenous pigments, chemical reactions, processing, and its prevention. Compr. Rev. Food Sci. Food Saf. 2022, 21, 580–603. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Navarro, C.; Pérez-Álvarez, J.A.; Kuri, V. Alternatives for efficient and sustainable production of surimi: A review. Compr. Rev. Food Sci. Food Saf. 2009, 8, 359–374. [Google Scholar] [CrossRef]
- Ochiai, Y.; Ochiai, L.; Hashimoto, K.; Watabe, S. Quantitative estimation of dark muscle content in the mackerel meat paste and its products using antisera against myosin light chains. J. Food Sci. 2001, 66, 1301–1305. [Google Scholar] [CrossRef]
- Dong, X.; Huang, Y.; Pan, Y.; Wang, K.; Prakash, S.; Zhu, B. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi. J. Texture Stud. 2019, 50, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.M.; Park, J.W. Effective washing conditions reduce water usage for surimi processing. J. Aquat. Food Prod. 1997, 6, 65–79. [Google Scholar] [CrossRef]
- Jin, S.K.; Kim, I.S.; Kim, S.J.; Jeong, K.J.; Choi, Y.J.; Hur, S.J. Effect of muscle type and washing times on physico-chemical characteristics and qualities of surimi. J. Food Eng. 2007, 81, 618–623. [Google Scholar] [CrossRef]
- Chen, H.H.; Chiu, E.M.; Huang, J.R. Color and gel-forming properties of horse mackerel (Trachurus japonicus) as related to washing conditions. J. Food Sci. 1997, 62, 985–991. [Google Scholar] [CrossRef]
- Somjid, P.; Panpipat, W.; Chaijan, M. Carbonated water as a novel washing medium for mackerel (Auxis thazard) surimi production. J. Food Sci. Technol. 2017, 54, 3979–3988. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Y.; Sun, J.; Yang, H. Physicochemical properties of grass carp surimi as affected by pH and NaCl concentration during washing. Int. J. Food Prop. 2023, 26, 952–962. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Benjakul, S.; Seymour, T.S.; Morrissey, M.T.; An, H. Physico-chemical changes in Pacific whiting muscle proteins during iced storage. J. Food Sci. 1997, 62, 729–733. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Bauer, F. Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles. Food Chem. 2001, 72, 207–217. [Google Scholar] [CrossRef]
- Schricker, B.R.; Miller, D.D.; Stouffer, J.R. Measurement and content of nonheme and total iron in muscle. J. Food Sci. 1982, 47, 740–743. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymol. 1978, 52, 302–304. [Google Scholar]
- Somjid, P.; Panpipat, W.; Cheong, L.Z.; Chaijan, M. Reduced washing cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production: Evaluation of bio-physico-chemical, rheological, and gel-forming properties. Foods 2021, 10, 2717. [Google Scholar] [CrossRef]
- Hassan, M.A.; Balange, A.K.; Senapati, S.R.; Martin Xavier, K.A. Effect of different washing cycles on the quality of Pangasius hypophthalmus surimi. Fish. Technol. 2017, 5, 51–59. [Google Scholar]
- Chen, X.; Tume, R.K.; Xu, X.; Zhou, G. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Crit. Rev. Food Sci. 2017, 57, 3260–3280. [Google Scholar] [CrossRef]
- Ramadhan, K.; Huda, N.; Ahmad, R. Effect of number and washing solutions on functional properties of surimi-like material from duck meat. J. Food Sci. Technol. 2014, 51, 256–266. [Google Scholar] [CrossRef]
- Allison, A.; Fouladkhah, A. Adoptable interventions, human health, and food safety considerations for reducing sodium content of processed food products. Foods 2018, 7, 16. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, M.; Su, G.; Cui, C.; Sun, W. Gelation of salted myofibrillar protein under malondialdehyde-induced oxidative stress. Food Hydrocoll. 2014, 40, 153–162. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf. 2011, 10, 33–51. [Google Scholar] [CrossRef]
- Puolanne, E.; Halonen, M. Theoretical aspects of water-holding in meat. Meat Sci. 2010, 86, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.L.; Brekke, C.J. Protein extractability and thermally induced gelation properties of myofibrils isolated from pre-and post-rigor chicken muscles. J. Food Sci. 1991, 56, 210–215. [Google Scholar] [CrossRef]
- Wu, L.; Wu, T.; Wu, J.; Chang, R.; Lan, X.; Wei, K.; Jia, X. Effects of cations on the “salt in” of myofibrillar proteins. Food Hydrocoll. 2016, 58, 179–183. [Google Scholar] [CrossRef]
- Salis, A.; Ninham, B.W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. [Google Scholar] [CrossRef]
- Valle-Delgado, J.J.; Molina-Bolívar, J.A.; Galisteo-González, F.; Gálvez-Ruiz, M.J. Evidence of hydration forces between proteins. Curr. Opin. Colloid Interface. 2011, 16, 572–578. [Google Scholar] [CrossRef]
- Chaijan, M.; Benjakul, S.; Visessanguan, W.; Faustman, C. Characteristics and gel properties of muscles from sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) caught in Thailand. Food Res. Int. 2004, 37, 1021–1030. [Google Scholar] [CrossRef]
- Buttkus, H. Accelerated denaturation of myosin in frozen solution. J. Food Sci. 1970, 35, 558–562. [Google Scholar] [CrossRef]
- Das, N.; Khuntia, B.K.; Raychaudhuri, U.; Dora, K.C.; Ganguly, S. Effect of water washing on the functional properties of fish meat. Int. J. Med. Microbiol. Trop. Dis. 2015, 1, 8–12. [Google Scholar]
- Panpipat, W.; Chaijan, M. Effect of atmospheric pressure cold plasma on biophysical properties and aggregation of natural actomyosin from threadfin bream (Nemipterus bleekeri). Food Bioproc. Technol. 2020, 13, 851–859. [Google Scholar] [CrossRef]
- Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Yang, W.; Xue, C. Effects of ozone-induced oxidation on the physicochemical properties of myofibrillar proteins recovered from bighead carp (Hypophthalmichthys nobilis). Food Bioproc. Technol. 2015, 8, 181–190. [Google Scholar] [CrossRef]
- Chaijan, M.; Srirattanachot, K.; Panpipat, W. Biochemical property and gel-forming ability of surimi-like material from goat meat. Int. J. Food Sci. Technol. 2021, 56, 988–998. [Google Scholar] [CrossRef]
- Shimizu, Y.; Toyohara, H.; Lanier, T.C. Surimi production from fatty and dark-flesh species. In Surimi Technology, 1st ed.; Lanier, T.C., Lee, C.M., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 181–207. [Google Scholar]
- Kelleher, S.D.; Hultin, H.O.; Wilhelm, K.A. Stability of mackerel surimi prepared under lipid-stabilizing processing conditions. J. Food Sci. 1994, 59, 269–271. [Google Scholar] [CrossRef]
- Monahan, F.J.; German, J.B.; Kinsella, J.E. Effect of pH and temperature on protein unfolding and thiol/disulfide inter-change reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 1995, 43, 46–52. [Google Scholar] [CrossRef]
- Careche, M.; Li-Chan, E.C.Y. Structural changes in cod myosin after modification with formaldehyde or frozen storage. J. Food Sci. 1997, 62, 717–723. [Google Scholar] [CrossRef]
- Cao, J.; Yan, H.; Ye, B.; Shen, Y.; Liu, L. Effects of Maillard reaction products on myoglobin-mediated lipid oxidation during refrigerated storage of carp. Food Chem. 2023, 434, 137465. [Google Scholar] [CrossRef]
- Jiang, S.T.; Ho, M.L.; Jiang, S.H.; Lo, L.; Chen, H.C. Color and quality of mackerel surimi as affected by alkaline washing and ozonation. J. Food Sci. 1998, 63, 652–655. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S. Gelling characteristics of surimi from yellow stripe trevally (Selaroides leptolepis). Int. Aquat. Res. 2012, 4, 5. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [PubMed]
Treatment | 1st Cycle | 2nd Cycle | 3rd Cycle | Yield (%) * |
---|---|---|---|---|
Unwashed mince (U) | - | - | - | - |
T1 | Cold carbonated water (CW) | Cold tap water (CTW) | CTW | 62.27 ± 1.1 a |
T2 | CW + 0.3% NaCl | CTW | CTW | 54.77 ± 2.3 b |
T3 | CW + 0.6% NaCl | CTW | CTW | 39.64 ± 2.0 c |
T4 | CW + 0.9% NaCl | CTW | CTW | 27.24 ± 1.4 f |
T5 | CW + 0.3% NaCl | CTW + 0.3% NaCl | CTW + 0.3% NaCl | 35.23 ± 2.1 d |
T6 | CW + 0.6% NaCl | CTW + 0.6% NaCl | CTW + 0.6% NaCl | 30.38 ± 1.0 e |
T7 | CW + 0.9% NaCl | CTW + 0.9% NaCl | CTW + 0.9% NaCl | 16.69 ± 2.3 g |
Conventional washing (C) | CTW | CTW | CTW | 39.04 ± 1.9 c |
Treatment | pH | Reactive Sulfhydryl Content (mol/108 g Protein) | Ca2+-ATPase Activity (μmolPi/mg Protein/min) | Surface Hydrophobicity; BPB Bound (μg) | TCA-Soluble Peptide (μmol Tyrosine/g Sample) |
---|---|---|---|---|---|
U | 5.54 ± 0.01 c | 2.70 ± 0.36 bc | 0.47 ± 0.02 a | 34.09 ± 0.50 e | 0.23 ± 0.00 a |
T1 | 6.60 ± 0.22 a | 3.45 ± 0.24 ab | 0.14 ± 0.02 e | 52.66 ± 3.51 c | 0.12 ± 0.01 b |
T2 | 6.11 ± 0.14 b | 2.19 ± 0.06 c | 0.29 ± 0.04 b | 43.17 ± 3.46 d | 0.12 ± 0.00 b |
T3 | 6.06 ± 0.04 b | 3.61 ± 0.58 a | 0.20 ± 0.03 cd | 64.02 ± 3.78 b | 0.11 ± 0.01 b |
C | 6.05 ± 0.06 b | 3.46 ± 0.34 ab | 0.24 ± 0.01 bc | 76.27 ± 3.18 a | 0.11 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panpipat, W.; Thongkam, P.; Boonmalee, S.; Çavdar, H.K.; Chaijan, M. Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources. Resources 2023, 12, 126. https://doi.org/10.3390/resources12100126
Panpipat W, Thongkam P, Boonmalee S, Çavdar HK, Chaijan M. Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources. Resources. 2023; 12(10):126. https://doi.org/10.3390/resources12100126
Chicago/Turabian StylePanpipat, Worawan, Porntip Thongkam, Suppanyoo Boonmalee, Hasene Keskin Çavdar, and Manat Chaijan. 2023. "Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources" Resources 12, no. 10: 126. https://doi.org/10.3390/resources12100126
APA StylePanpipat, W., Thongkam, P., Boonmalee, S., Çavdar, H. K., & Chaijan, M. (2023). Surimi Production from Tropical Mackerel: A Simple Washing Strategy for Better Utilization of Dark-Fleshed Fish Resources. Resources, 12(10), 126. https://doi.org/10.3390/resources12100126