Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia
Abstract
:1. Introduction
Literature Overview
2. Methodology
- The first was to collect data and other relevant content from publication databases, including scientific research articles and academic works.
- The second source of information was obtained from the annual periodic reports of renewable energies at a global level, energy policies, and energy portfolios of Colombia.
3. Results and Discussion: SWOT Analysis
3.1. Strengths Analysis
3.1.1. Regions with High Solar Irradiation
3.1.2. Availability of Solarimetric Data
3.1.3. Versatility and Ease in Application of Solar Thermal Systems
3.1.4. Support for the Development of Renewable Energies through Government Policies
3.2. Weakness Analysis
3.2.1. Lack of Large-Scale Solar Thermal Projects
3.2.2. Outdated and Geographically Limited Solarimetric Database
3.2.3. Low Investment in Research and Development (R&D)
3.3. Opportunities Analysis
3.3.1. Positive Impact on the Energy Transition
- Diversify the energy matrix and seek, among other things, to increase the share of non-conventional renewable energy sources in the primary energy supply from 4.1% in 2019 to 8.6% in 2030.
- Adopt new technologies for efficient use of energy resources to reduce the firewood share in the residential sector from 38% in 2019 to 26.5% in 2025 and 13% in 2030.
- Strive for an energy system with low greenhouse gas emissions.
3.3.2. Economic Growth in Colombia
3.3.3. Ideal Conditions for using Solar Heat in the Residential and Productive Sectors
- Potential for Solar Heat Application in the Residential Sector
- Potential for Solar Heat Application in the Industrial Sector
3.3.4. The Exploitation of Government Subsidies and Support
- Extractive Industry Resources for the Energy Transition
- Tax Incentives
- Standardization in Solar Energy
3.3.5. Innovation and Generation of New Renewable Technologies
3.4. Threat Analysis
3.4.1. Uncertain Changes to Energy Regulations
3.4.2. Corruption
3.4.3. Armed Conflict
3.4.4. Inequity in Education
3.5. Main Findings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acosta-Pazmiño, I.P.; Rivera-Solorio, C.I.; Gijón-Rivera, M. Scaling-up the Installation of Hybrid Solar Collectors to Reduce CO2 Emissions in a Mexican Industrial Sector from Now to 2030. Appl. Energy 2021, 298, 117202. [Google Scholar] [CrossRef]
- Ham-Chande, R.; Nava-Bolaños, I. Convergence Toward Demographic Aging in Latin America and the Caribbean. Annu. Rev. Sociol. 2019, 45, 607–623. [Google Scholar] [CrossRef]
- Dimitrov, R.S. The Paris Agreement on Climate Change: Behind Closed Doors. Glob. Environ. Polit. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Klein, D.; Pía Carazo, M.; Doelle, M.; Bulmer, J.; Higham, A. The Paris Agreement on Climate Change; Oxford University Press: Oxford, UK, 2017; ISBN 9780198789338. [Google Scholar]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and Interannual Complementarities of Renewable Energy Sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Arias-Gaviria, J.; Carvajal-Quintero, S.X.; Arango-Aramburo, S. Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia. Renew. Energy 2019, 139, 1111–1119. [Google Scholar] [CrossRef]
- Pupo-Roncallo, O.; Campillo, J.; Ingham, D.; Hughes, K.; Pourkashanian, M. Large Scale Integration of Renewable Energy Sources (RES) in the Future Colombian Energy System. Energy 2019, 186, 115805. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Installed Electricity Capacity (MW) by Country/Area, Technology, Grid Connection and Year. PxWeb. Available online: https://pxweb.irena.org/ (accessed on 28 September 2023).
- Unidad de Planeación Minero Energética Balance Energético Colombiano. Available online: https://public.tableau.com/app/profile/upme/viz/shared/JZNGHX6JP (accessed on 5 October 2023).
- Ho, S.M.; Lomi, A.; Okoroigwe, E.C.; Urrego, L.R. Investigation of Solar Energy: The Case Study in Malaysia, Indonesia, Colombia, and Nigeria. Int. J. Renew. Energy Res. 2019, 9, 1–10. [Google Scholar]
- Hannah Ritchie, M.R.; Op, R. Energy. Available online: https://ourworldindata.org/energy (accessed on 3 October 2023).
- Madurai Elavarasan, R.; Afridhis, S.; Rajan Vijayaraghavan, R.; Subramaniam, U.; Nurunnabi, M. SWOT Analysis: A Framework for Comprehensive Evaluation of Drivers and Barriers for Renewable Energy Development in Significant Countries. Energy Rep. 2020, 6, 1838–1864. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Franco, A.C.; Franco, L.S. Photovoltaic Solar Energy and Environmental Impacts in the Industrial Sector: A Critical Overview of Barriers and Opportunities. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–13. [Google Scholar] [CrossRef]
- Uhunamure, S.E.; Shale, K.; Schumacher, K. A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa. Sustainability 2021, 13, 3933. [Google Scholar] [CrossRef]
- Qaisrani, M.A.; Wei, J.; Khan, A. Potential and Transition of Concentrated Solar Power: A Case Study of China. Sustain. Energy Technol. Assess. 2021, 44, 101052. [Google Scholar] [CrossRef]
- Agyekum, E.B. Energy Poverty in Energy Rich Ghana: A SWOT Analytical Approach for the Development of Ghana’s Renewable Energy. Sustain. Energy Technol. Assess. 2020, 40, 100760. [Google Scholar] [CrossRef]
- Schmidt, R.-R.; Gölles, M.; Provasnek, A.K.; Leoni, P.; Putz, S. Barriers and Opportunities to Maximize the Share of Solar Thermal Energy in District Heating Networks-Approaches within the IEA SHC Task 55, Subtask A and Selected Preliminary Results; International Solar Energy Society Selection: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar] [CrossRef]
- Elmorsy, L.; Hamdy, S.; Morosuk, T.; Tsatsaronis, G. Evaluating the Market Potential of Concentrated Solar Thermal Technology for Different Applications in the MENA Region. J. Energy Resour. Technol. 2022, 144, 050902. [Google Scholar] [CrossRef]
- Horta Nogueira, L.A.; Antonio de Souza, L.G.; Barbosa Cortez, L.A.; Lima Verde Leal, M.R. Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The Path from Feasibility to Acceptability. Renew. Sustain. Energy Rev. 2017, 76, 292–308. [Google Scholar] [CrossRef]
- Venegas, C.; Sánchez-Alfonso, A.C.; Celis, C.; Vesga, F.J.; Mendez, M.G. Management Strategies and Stakeholders Analysis to Strengthen the Management and Use of Biosolids in a Colombian Municipality. Sustainability 2021, 13, 12180. [Google Scholar] [CrossRef]
- Diaz, F.; Cilinskis, E. Use of Multi-Criteria TOPSIS Analysis to Define a Decarbonization Path in Colombia. Environ. Clim. Technol. 2019, 23, 110–128. [Google Scholar] [CrossRef]
- Rodríguez-Toscano, A.; Amaris, C.; Sagastume-Gutiérrez, A.; Bourouis, M. NC-ND License Technical, Environmental, and Economic Evaluation of a Solar/Gas Driven Absorption Chiller for Shopping Malls in the Caribbean Region of Colombia. Case Stud. Therm. Eng. 2021, 30, 101743. [Google Scholar] [CrossRef]
- Lopez, J.C.; Escobar, A.; Cardenas, D.A.; Restrepo, A. Parabolic Trough or Linear Fresnel Solar Collectors? An Exergy Comparison of a Solar-Assisted Sugarcane Cogeneration Power Plant*. Renew. Energy 2020, 165, 139–150. [Google Scholar] [CrossRef]
- Valencia-Cañola, S.; Bustamante, C.A.; Mira-Hernández, C.; Isaza-Roldán, C.A. Thermo-Economical Performance Analysis of a Direct-Expansion Solar Heat-Pump Water Heater Driven by a Photovoltaic Array and the Electrical Grid in Medellín Colombia. Appl. Therm. Eng. 2022, 222, 119930. [Google Scholar] [CrossRef]
- Andrés, C.; Soler, C.; Cunha Malagueta, D.; Andrés, C.; Martin, G. Feasibility of Implementation of Solar Thermal Energy in Steam-Assisted Gravity Drainage (SAGD) in Extra-Heavy Oil Field in Colombia. Geoenergy Sci. Eng. 2023, 222, 211463. [Google Scholar] [CrossRef]
- Chen, W.-M.; Kim, H.; Yamaguchi, H. Renewable Energy in Eastern Asia: Renewable Energy Policy Review and Comparative SWOT Analysis for Promoting Renewable Energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- Kamran, M.; Rayyan Fazal, M.; Mudassar, M. Towards Empowerment of the Renewable Energy Sector in Pakistan for Sustainable Energy Evolution: SWOT Analysis. Renew. Energy 2019, 146, 543–558. [Google Scholar] [CrossRef]
- Solargis Mapas de Recursos Solares de Colombia. Available online: https://solargis.com/maps-and-gis-data/download/colombia (accessed on 28 September 2023).
- Instituto de Hidrología, M. y E.A. (IDEAM). Atlas de Radiación Solar-Interactivo. Available online: http://atlas.ideam.gov.co/visorAtlasRadiacion.html (accessed on 28 September 2023).
- Ministerio de Comercio, I. y T. Informes PIB. Available online: https://www.mincit.gov.co/estudios-economicos/estadisticas-e-informes/informes-pib (accessed on 28 September 2023).
- Jaramillo, S.A.F.; Tarquino, I.R.; Jaramillo, S.A.D. Instalación Solar Para Calentamiento de Agua de Proceso Aplicado a Una Industria de Curtiembre, Empleando Materiales y Topología de a Alta Eficiencia Desarrollados En Colombia. Revista Energía y Computación 2011, 14, 41–48. [Google Scholar]
- Ravi Kumar, K.; Krishna Chaitanya, N.V.V.; Kumar Natarajan, S. Solar Thermal Energy Technologies and Its Applications for Process Heating and Power Generation e A Review. J. Clean. Prod. 2020, 282, 125296. [Google Scholar] [CrossRef]
- Guangul, F.M.; Chala, G.T. Solar Energy as Renewable Energy Source: SWOT Analysis. In Proceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 January 2019. [Google Scholar]
- Binks, A.N.; Kenway, S.J.; Lant, P.A.; Head, B.W. Understanding Australian Household Water-Related Energy Use and Identifying Physical and Human Characteristics of Major End Uses. J. Clean. Prod. 2016, 135, 892–906. [Google Scholar] [CrossRef]
- Navntoft, L.C. Resumen-Ejecutivo-Calentadores-Solares-Térmicos. Available online: https://fundacionbariloche.org.ar/wp-content/uploads/2019/04/3.-Resumen-Ejecutivo-Calentadores-Solares-T%C3%A9rmicos.pdf (accessed on 5 October 2023).
- Unidad de Planeación Minero Energética Incentivos Tributarios de Fuentes No Convencionales de Energía-FNCE. Available online: https://www1.upme.gov.co/ (accessed on 28 September 2023).
- Departamento Administrativo de la Función Pública, C. Decreto 820 de 2020. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=127884 (accessed on 28 September 2023).
- Unidad de Planeación Minero Energética Resolución No. 000203 de 2020. Available online: https://www1.upme.gov.co/Normatividad/203-2020.pdf (accessed on 28 September 2023).
- Acuña, J.C.E.; Villarreal, J.F.O. Identificación de Los Factores Críticos Para La Implementación de Sistemas Solares Fotovoltaicos En Colombia. Din. Ambient. 2018, 2, 90–98. [Google Scholar]
- Rodríguez Murcia, H. Desarrollo de La Energía Solar En Colombia y Sus Perspectivas. Revista de Ingeniería. 2008, 28, 83–89. [Google Scholar] [CrossRef]
- Frohlich, C. History of Solar Radiometry and the World Radiometric Reference. Metrologia 1991, 28, 111. [Google Scholar] [CrossRef]
- Guerrero Giraldo, L.M. Análisis de La Gestión Del Cambio Climático En Colombia y Sus Compromisos Internacionales a La Luz Del Plan Nacional de Desarrollo 2018–2022; Repositorio Institucional E-docUR, Universidad del Rosario: Bogota, Colombia, 2021. [Google Scholar]
- Ayala, M.V.; Chavez, L.; Dejanón, F.; Kattah, B.; Martí, A.; Péreznez, M.D.; Piedrahíta, P.; Vargas, R.M.; Velásquez, M.; Bonilla, C. Misión Internacional de Sabios 2019: Síntesis y Comentarios. Pensam. Univ. 2020, 32, 13–15. [Google Scholar]
- Unidad de Planeación Minero Energética Plan de Acción Indicativo, Programa de Uso Racional y Eficiente de Energía. Available online: https://www1.upme.gov.co/DemandayEficiencia/Paginas/PROURE.aspx (accessed on 28 September 2023).
- Nieves, J.A.; Aristizabal, A.J.; Dyner, I.; Aez, O.B.; Ospina, D.H. Energy Demand and Greenhouse Gas Emissions Analysis in Colombia: A LEAP Model Application. Energy 2018, 169, 380–397. [Google Scholar] [CrossRef]
- Unidad de Planeación Minero Energética Modelos Analíticos-Demanda y Eficiencia Energética. Escenario Residencial. Available online: https://public.tableau.com/shared/XKP66PZBW?:showVizHome=no (accessed on 28 September 2023).
- Departamento Administrativo Nacional de Estadística-DANE Encuesta Nacional de Calidad de Vida (ECV) 2022. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2022 (accessed on 28 September 2023).
- International Energy Agency-IEA. A Vision for Clean Cooking Access for All–Analysis-IEA. Available online: https://www.iea.org/reports/a-vision-for-clean-cooking-access-for-all (accessed on 28 September 2023).
- Unidad de Planeación Minero Energética Modelos Analíticos-Demanda y Eficiencia Energética. Escenario Industrial. Available online: https://public.tableau.com/shared/BYHWF5275?:showVizHome=no (accessed on 12 October 2023).
- AEE-Institut für Nachhaltige Technologien Efficiency Finder. Available online: http://wiki.zero-emissions.at/index.php?title=EFFICIENCY_FINDER (accessed on 26 September 2023).
- Solarthermalworld.org Solar Heat for Largest Private Hospital in Bogotá|Solar Thermal World. Available online: https://solarthermalworld.org/news/solar-heat-largest-private-hospital-bogota/ (accessed on 26 September 2023).
- FEDESARROLLO Centro de Investigación Económica y Social Contribuciones Sectoriales y Nacionales Del Grupo Ecopetrol Entre 2010 y 2020. Available online: https://www.repository.fedesarrollo.org.co/handle/11445/4301 (accessed on 26 September 2023).
- Ministerio de Minas y Energía Moderno Parque Solar Generará Autoabastecimiento Para Ecopetrol En Huila. Available online: https://www.minenergia.gov.co/es/sala-de-prensa/noticias-index/moderno-parque-solar-generar%C3%A1-autoabastecimiento-para-ecopetrol-en-huila/ (accessed on 26 September 2023).
- Instituto Colombiano de Normas Técnicas y Certificación-ICONTEC Ingeniería de La Energía Solar. Available online: https://tienda.icontec.org (accessed on 28 September 2023).
- IRENA–International Renewable Energy Agency. Available online: https://www.irena.org/ (accessed on 28 September 2023).
- Gaviria Martínez, E. Solar Energy in Colombia: Harvesting Social Innovation and Community Renewable Energy Projects. Ph.D. Dissertation, Technische Universität Berlin, Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Transparency International 2022 Corruption Perceptions Index. Available online: https://www.transparency.org/en/cpi/2022 (accessed on 28 September 2023).
- Gómez Portilla, K.; Gómez Gallón, S. El Impacto de La Corrupción Sobre El Crecimiento Económico. Lect. Econ. 2002, 57, 49–86. [Google Scholar]
- Edsand, H.E. Identifying Barriers to Wind Energy Diffusion in Colombia: A Function Analysis of the Technological Innovation System and the Wider Context. Technol. Soc. 2017, 49, 1–15. [Google Scholar] [CrossRef]
- Tian, N.; Kuimova, A.; Lopes da Silva, D.; Wezeman, P.; Wezeman, S. Trends in World Military Expenditure, 2019; SIPRI: Stockholm, Sweden, 2019. [Google Scholar] [CrossRef]
- Solano, J.A.V. Terrorismo Como Detonante de Desastres: Atentados Terroristas Contra Oleoducto Caño Limón Coveñas En Colombia. Rev. Estud. Latinoam. Sobre Reducción Del Riesgo Desastres REDER 2021, 5, 126–136. [Google Scholar] [CrossRef]
- Sánchez Estupiñan, A. Evaluación Del Riesgo Por Terrorismo de La Infraestructura Estatal Petrolera En Los Departamentos de Arauca, Casanare y Putumayo En Colombia. Ph.D. Thesis, Universidad del Valle, Cali, Colombia, 2016. [Google Scholar]
- Alvaredo, F.; Chancel, L.; Piketty, T.; Saez, E.; Zucman, G. World Inequality Report 2018; Belknap Press: London, UK, 2018. [Google Scholar]
- Soler, M.; Morlà-Folch, T.; García-Carrión, R.; Valls, R. Transforming Rural Education in Colombia through Family Participation: The Case of School as a Learning Community. JSSE J. Soc. Sci. Educ. 2019, 18, 67–80. [Google Scholar] [CrossRef]
Law or Decrees | Article | Statutes |
---|---|---|
Law 1715 (2014) | General | Promoting the integration of non-conventional renewable energies into the national energy system through their incorporation into the electricity market, participation in non-interconnected zones, and other energy uses. |
2° subsection (e) | Stimulates investment, research, and development for producing and using energy from Non-Conventional Energy Sources (mainly renewable ones) by establishing tax, tariff, or accounting incentives. | |
12 | Establishes tax incentives and VAT exclusion for national or imported equipment, elements, machinery, and services for preinvestment and investment for producing and using energy from non-conventional sources. | |
13 | Establishes that individuals or legal entities that are holders of new investments in new FNCE projects will be exempted from the payment of import duties on machinery, equipment, materials, and supplies destined exclusively for preinvestment and investment in projects for developing renewable energy projects. | |
14 | Establishes an accounting incentive consisting of the accelerated depreciation of machinery, equipment, and civil works necessary for the generation’s preinvestment, investment, and operation with FNCE with an annual depreciation rate of no more than twenty percent (20%). | |
Law 1955 (2019) | 174 | The National Development Plan 2018–2022 establishes the incentives for generating electric energy with non-conventional sources and the public policy objectives (called pacts). |
Pact IX (Mining energy resources for sustainable growth and expansion of opportunities) | Contemplates mining-energy development programs with environmental and social responsibility and energy security for productive development. | |
296 | Establishes that the commercializing agents of the Wholesale Energy Market will be obliged to ensure that between 8% and 10% of their energy purchases come from non-conventional renewable energy sources. | |
Resolution UPME 203 (2020) | General | Establishes “the requirements and the procedure through which the UPME will evaluate the applications and issue the certificates that allow access to the tax benefits of income deduction, VAT exclusion and exemption from customs duties to investments in research, development or production of energy from Non-Conventional Energy Sources—FNCE” [39]. |
Decree 829 (2020) | General | Expands the effects of the deduction article in determining income tax to include non-electric uses of FNCE [38], such as solar heating. |
Law 2099 (2021) | General | Establishes modifications to Law 1715, which creates the Non-Conventional Energy and Efficient Energy Management Fund (FENOGE), which acts as a channel and catalyst of resources destined by third parties to finance plans, programs, and projects of Non-Conventional Energy Sources and Efficient Energy Management. |
Decree 199 (2021) | General | Amends the Sole Regulatory Decree of the Mines and Energy Sector (1073 of 2015) regarding the policy guidelines for expanding the electric power service coverage in the SIN and ZNI. The above is based on using alternative energies to produce electric energy that can be connected to the SIN. |
Energy Application | Energy Consumption (TJ) | Participation (%) |
---|---|---|
Cooking * | 172,267.2 | 66.7 |
Water heating * | 3441.7 | 1.3 |
Refrigeration | 34,723.0 | 13.5 |
Television | 13,300.0 | 5.2 |
Lighting | 12,315.1 | 4.8 |
Air conditioning | 7425.7 | 2.9 |
Fans | 4706.4 | 1.8 |
Other ** | 9918.3 | 3.9 |
Energy Application | Energy Consumption (TJ) | Participation (%) |
---|---|---|
Direct heating | 132,498.0 | 43.7 |
Indirect heating | 124,434.3 | 41.1 |
Driving force | 38,618.6 | 12.7 |
Refrigeration | 4295.5 | 1.4 |
Lighting | 2461.1 | 0.8 |
Other electric equipment | 777.5 | 0.3 |
Unit Operation | Temperature Range (°C) | Recommended Solar Technology * | ||||
---|---|---|---|---|---|---|
FPC | ETC | CPC | PTC | Fresnel | ||
Food Industry | ||||||
Cooling/Cleaning/Drying | 20–80 | ✓ | ✓ | |||
Evaporation/Distillation/Cooking | 80–140 | ✓ | ✓ | |||
Paper Industry | ||||||
Drying/Cleaning | 40–80 | ✓ | ||||
Calendering | 80–140 | ✓ | ✓ | |||
Metal Industry | ||||||
Cleaning/Cooling/Painting | 20–80 | ✓ | ✓ | |||
Drying/Surface treatment/Casting | 80–160 | ✓ | ✓ | ✓ | ✓ | |
Textile Industry | ||||||
Cleaning/Drying/Bleaching | 20–80 | ✓ | ✓ | |||
Other heating process/Painting | 80–140 | ✓ | ✓ | |||
Chemical Industry | ||||||
Cleaning/Drying | 20–80 | ✓ | ✓ | |||
Heating /Extraction/Evaporation | 80–150 | ✓ | ✓ | ✓ | ✓ | |
Leather Industry | ||||||
Cleaning/Bleaching/Drying | 40–80 | ✓ | ✓ |
NTC 1736:2005 | Solar Energy. Definitions and Nomenclature. |
NTC 2631:2012 | Solar energy. Calculation of photometric transmittance and reflectance in materials subjected to solar radiation. |
NTC 2774:1990 | Solar energy. Evaluation of thermal insulating materials used in solar collectors. |
NTC 3322:2010 | Solar energy. Used rubber seals in flat plate solar collectors. |
NTC 3507:1993 | Solar energy. Installation of domestic hot water systems that work with solar energy. |
NTC 4368:1997 | Energy efficiency. Solar water heating systems and components. |
NTC 5291:2004 | Domestic solar water heating systems (heat transfer from one liquid to another). |
NTC 5434-1:2013 | Solar thermal systems and components. Solar collectors. Part 1. General requirements. |
NTC 5434-2:2011 | Solar thermal systems and components. Solar collectors. Part 2: test methods. |
NTC 5709:2009 | Analytical expression for daily solar profiles. |
GTC 108:2004 | Solar energy. Specifications for solar-powered water heating systems for domestic use. |
Strengths | Weaknesses |
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancur, S.; Ortega-Avila, N.; López-Vidaña, E.C. Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia. Resources 2024, 13, 3. https://doi.org/10.3390/resources13010003
Betancur S, Ortega-Avila N, López-Vidaña EC. Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia. Resources. 2024; 13(1):3. https://doi.org/10.3390/resources13010003
Chicago/Turabian StyleBetancur, Stefania, Naghelli Ortega-Avila, and Erick César López-Vidaña. 2024. "Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia" Resources 13, no. 1: 3. https://doi.org/10.3390/resources13010003
APA StyleBetancur, S., Ortega-Avila, N., & López-Vidaña, E. C. (2024). Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia. Resources, 13(1), 3. https://doi.org/10.3390/resources13010003