Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Historical Changes
2.3.2. Future Changes
- ρ—water density (M·L−3);
- cp—specific heat capacity (L2·T−2·Θ−1);
- Vs—lake surface water volume (L3);
- Tw—lake surface water temperature (Θ);
- t—time (T);
- A—lake surface area of the (L2);
- Φnet—net heat flux into the upper lake water volume (M·T−3).
- a1, a2, a3, a4, a5, a6—model parameters;
- ty—duration of the year (T);
- Ta—air temperature (Θ);
- δ—dimensionless volume (or depth) is calculated as the ratio of lake surface water volume vs. (L3) and a reference volume Vr (L3);
- Th reference value of deep water temperature (Θ).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Ptak, M.; Wrzesiński, D.; Choiński, A. Long-term changes in the hydrological regime of high mountain lake Morskie Oko (Tatra Mountains, Central Europe). J. Hydrol. Hydromech. 2017, 65, 146–153. [Google Scholar] [CrossRef]
- Robertson, D.M.; Ragotzkie, R.A. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci. 1990, 52, 360–380. [Google Scholar] [CrossRef]
- Aranda, A.C.; Rivera-Ruiz, D.; Rodríguez-López, L.; Pedreros, P.; Arumí-Ribera, J.L.; Morales-Salinas, L.; Fuentes-Jaque, G.; Urrutia, R. Evidence of Climate Change Based on Lake Surface Temperature Trends in South Central Chile. Remote Sens. 2021, 13, 4535. [Google Scholar] [CrossRef]
- Desgué-Itier, O.; Melo Vieira Soares, L.; Anneville, O.; Bouffard, D.; Chanudet, V.; Danis, P.A.; Domaizon, I.; Guillard, J.; Mazure, T.; Sharaf, N.; et al. Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes. Hydrol. Earth Syst. Sci. 2023, 27, 837–859. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Dibike, Y.; Marshall, R.; de Rham, L. Climatic sensitivity of seasonal ice-cover, water temperature and biogeochemical cycling in Lake 239 of the Experimental Lakes Area (ELA), Ontario, Canada. Ecol. Model. 2024, 489, 110621. [Google Scholar] [CrossRef]
- Zhu, W.; You, X.-Y.; Duan, Z.-P.; Lü, Y.; Hou, H. Changes in the Water Quality and Its Responses to Temperature and Water Level in Xukou Bay of Lake Taihu during 2016–2022. J. Ecol. Rural Environ. 2024, 40, 469–477. [Google Scholar]
- Elliott, J.A.; Jones, I.D.; Thackeray, S.J. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 2006, 559, 401–411. [Google Scholar] [CrossRef]
- Bayable, G.; Cai, J.; Mekonnen, M.; Legesse, S.A.; Ishikawa, K.; Sato, S.; Kuwahara, V.S. Spatiotemporal variability of lake surface water temperature and water quality parameters and its interrelationship with water hyacinth biomass in Lake Tana, Ethiopia. Environ. Sci. Pollut. Res. 2024, 31, 45929–45953. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.I.; Eyto, E.; Jennings, E.; Goyette, S.; Pierson, D.C. Global warming will change the thermal structure of Lough Feeagh, a sentinel lake in the irish landscape, by the end of the twenty-first century. Biol. Environ. 2023, 123B, 145–163. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Woolway, R.I.; Merchant, C.J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim Change 2020, 160, 427–442. [Google Scholar] [CrossRef]
- Ptak, M.; Zhu, S.; Amnuaylojaroen, T.; Li, H.; Szyga-Pluta, K.; Jiang, S.; Wang, L.; Sojka, M. Utilizing Multi-Source datasets for the Reconstruction and Prediction of water temperature in Lake Miedwie (Poland). Remote Sens. 2024, 16, 2753. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland—Lake Śniardwy. J. Hydrol. Hydrodyn. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Jańczak, J. (Ed.) Atlas Jezior Polski. T. 3, Jeziora Pojezierza Mazurskiego i Polski Południowej; Wydawnictwo Naukowe: Poznań, Poland, 1999. [Google Scholar]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, 3rd ed.; Charles Griffin Ltd.: Cheshire, UK, 1968. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitorin; Van Nos-trand Reinhold Co.: New York, NY, USA, 1987. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6; 13 October 2022. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 31 August 2024).
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection, Version 1.1.6; 10 October 2023. Available online: https://cran.r-project.org/web/packages/trend/trend.pdf (accessed on 31 August 2024).
- Piccolroaz, S.; Toffolon, M.; Majone, B. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S. A hybrid model for river water temperature as a function of air temperature and discharge. Environ. Res. Lett. 2015, 10, 114011. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Healey, N.C.; Lenters, J.D.; Schladow, S.G.; Hook, S.J.; Sahoo, G.B.; Toffolon, M. On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (USA). Limnol. Oceanogr. 2018, 63, 243–261. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S.; Majone, B.; Soja, A.M.; Peeters, F.; Schmid, M.; Wüest, A. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol. Oceanogr. 2014, 59, 2185–2202. [Google Scholar] [CrossRef]
- Piccolroaz, S. Prediction of lake surface temperature using the air2water model: Guidelines, challenges, and future perspectives. Adv. Oceanogr. Limnol. 2016, 7, 1. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arneth, A.; Arsouze, T.; Bergmann, T.; Bernadello, R.; Bousetta, S.; Caron, L.P.; et al. The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. Geosci. Model Dev. Discuss. 2021, 2021, 1–90. [Google Scholar]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.-W.; Zhang, J.; Zhang, F.; Li, W.-P.; Zhang, Y.-W.; Lu, Y.-X.; Fang, Y.-J.; Jie, W.-H.; Zhang, L.; et al. Introduction of BCC models and its participation in CMIP6. Adv. Clim. Change Res. 2019, 15, 533. [Google Scholar]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model ver-sion 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Lauritzen, P.H.; Nair, R.D.; Herrington, A.R.; Callaghan, P.; Goldhaber, S.; Dennis, J.M.; Bacmeister, J.T.; Eaton, B.E.; Zarzycki, C.M.; Taylor, M.A.; et al. NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass ver-tical coordinates with comprehensive treatment of condensates and energy. J. Adv. Model. Earth Syst. 2018, 10, 1537–1570. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–417. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W. Some Applications of Statistics to Meteorology; Mineral Industries Extension Services, College of Mineral Industries; Pennsylvania State University: University Park, TX, USA, 1958. [Google Scholar]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the changepoint problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Sojka, M.; Piotrowski, A.P.; Luo, W. A simple approach to estimate lake surface water temperatures in Polish lowland lakes. J. Hydrol. Reg. Stud. 2023, 48, 101468. [Google Scholar] [CrossRef]
- Ptak, M. Long-term temperature fluctuations in rivers of the Fore-Sudetic region in Poland. Geografie 2018, 123, 279–294. [Google Scholar] [CrossRef]
- Dobiesz, N.E.; Lester, N.P. Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. J. Great Lakes Res. 2009, 35, 371–384. [Google Scholar] [CrossRef]
- Haddout, S.; Priya, K.L.; Boko, H. Thermal response of Moroccan lakes to climatic warming: First results. Ann. Limnol. Int. J. Limnol. 2018, 54, 2. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Choiński, A.; Wu, S. Exploring and quantifying the impact of climate change on surface water temperature of a high mountain lake in Central Europe. Environ. Monit. Assess. 2020, 192, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Somogyi, B.; Tóth, V. Exploring spatiotemporal features of surface water temperature for Lake Balaton in the 21st century based on Google Earth Engine. J. Hydrol. 2024, 640, 131672. [Google Scholar] [CrossRef]
- Pareeth, S.; Bresciani, M.; Buzzi, F.; Leoni, B.; Lepori, F.; Ludovisi, A.; Morabito, G.; Adrian, R.; Neteler, M.; Salmaso, N. Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data. Sci. Total Environ. 2017, 578, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Öğlü, B.; Möls, T.; Kaart, T.; Cremona, F.; Kangur, K. Parameterization of surface water temperature and long-term trends in Europe’s fourth largest lake shows recent and rapid warming in winter. Limnologica 2020, 82, 125777. [Google Scholar] [CrossRef]
- Brkić, Z.; Larva, O. Impact of climate change on the Vrana Lake surface water temperature in Croatia using support vector regression. J. Hydrol. Reg. Stud. 2024, 54, 101858. [Google Scholar] [CrossRef]
- Shatwell, T.; Thiery, W.; Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 2019, 23, 1533–1551. [Google Scholar] [CrossRef]
- Kangur, K.; Ginter, K.; Kangur, P.; Kangur, A.; Nõges, P.; Laas, A. Changes in water temperature and chemistry preceding a massive kill of bottom-dwelling fish: An analysis of high-frequency buoy data of shallow Lake Võrtsjärv (Estonia). Inland Waters 2016, 6, 535–542. [Google Scholar] [CrossRef]
- Voutilainen, A.; Huuskonen, H. Long-term changes in the water quality and fish community of a large boreal lake affected by rising water temperatures and nutrient-rich sewage discharges—With special emphasis on the European perch. Knowl. Manag. Aquat. Ecosyst. 2010, 397, 3. [Google Scholar] [CrossRef]
- Dokulil, M.T. Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios. Hydrobiologia 2014, 731, 19–29. [Google Scholar] [CrossRef]
- Schwefel, R.; Nkwalale, L.G.T.; Jordan, S.; Rinke, K.; Hupfer, M. Temperatures and hypolimnetic oxygen in German lakes: Observations, future trends and adaptation potential. Ambio 2024. [Google Scholar] [CrossRef] [PubMed]
- Biedka, P. Sezonowe zmiany stężenia tlenu i potencjału oksydoredukcyjnego w hypolimnionach wybranych jezior Pojezierza Suwalsko-Augustowskiego. Infrastrukt. I Ekol. Teren. Wiej. 2012, 3, 225–232. [Google Scholar]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar] [CrossRef]
- Lima Neto, I.E. Impact of artificial destratification on water availability of reservoirs in the Brazilian semiarid. An. Acad. Bras. Ciênc. 2019, 91, e20171022. [Google Scholar] [CrossRef] [PubMed]
Studzieniczne | Białe Augustowskie | |
---|---|---|
Area (ha) | 250.1 | 476.6 |
Max depth (m) | 30.5 | 30.0 |
Mean depth (m) | 8.7 | 8.7 |
Volume (mln m) | 22.0 | 41.7 |
Length (m) | 1425.0 | 5950.0 |
Width (m) | 1050.0 | 1200.0 |
Length of shoreline (m) | 12,100.0 | 18,650.0 |
m asl | 122.7 | 122.0 |
Institute | Model |
---|---|
Norwegian Climate Center (NCC) | NorESM2-MM |
Max Planck Institute for Meteorology (MPI-M) | MPI-ESM1-2-HR |
EC-Earth Consortium | EC-Earth3 |
Alfred Wegener Institute (AWI) | AWI-CM-1-1-MR |
Beijing Climate Center (BCC) | BCC-CSM2-MR |
Meteorological Research Institute (MRI) | MRI-ESM2-0 |
Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA) | GFDL-ESM4 |
National Center for Atmospheric Research (NCAR) | CESM2-WACCM |
Euro-Mediterranean Centre on Climate Change (CMCC) Foundation | CMCC-CM2-SR5 |
Period | RMSE (°C) | MAE (°C) | R2 (-) | NSE (-) | KGE (-) |
---|---|---|---|---|---|
Białe Augustowskie Lake | |||||
1954–1988 c | 1.24 | 0.94 | 0.98 | 0.973 | 0.944 |
1989–2023 v | 1.18 | 0.94 | 0.98 | 0.977 | 0.938 |
1989–2023 c | 1.14 | 0.90 | 0.98 | 0.979 | 0.959 |
1954–1988 v | 1.27 | 0.96 | 0.97 | 0.971 | 0.954 |
Studzieniczne Lake | |||||
1954–1988 c | 1.22 | 0.92 | 0.98 | 0.974 | 0.945 |
1989–2023 v | 1.11 | 0.89 | 0.98 | 0.980 | 0.946 |
1989–2023 c | 1.07 | 0.84 | 0.98 | 0.981 | 0.963 |
1954–1988 v | 1.26 | 0.94 | 0.98 | 0.972 | 0.956 |
Period | S | z-Value | p-Value | Sen Slope Value (°C Per Decade) |
---|---|---|---|---|
Air temperature—Suwałki station | ||||
1954–2023 | 1064 | 5.51 | 0.000 | 0.33 |
2024–2100 a | 1904 | 8.53 | 0.000 | 0.29 |
2024–2100 b | 2476 | 11.10 | 0.000 | 0.65 |
1954–1987 | −72 | −1.10 | 0.271 | −0.22 |
1988–2023 | 213 | 3.01 | 0.003 | 0.40 |
2024–2068 a | 490 | 4.95 | 0.000 | 0.35 |
2069–2100 a | 107 | 1.80 | 0.072 | 0.16 |
2024–2063 b | 521 | 6.29 | 0.000 | 0.66 |
2064–2100 b | 482 | 6.55 | 0.000 | 0.59 |
Lake surface water temperature—Białe Augustowskie | ||||
1954–2023 | 1258 | 6.51 | 0.000 | 0.28 |
2024–2100 a | 2000 | 8.97 | 0.000 | 0.22 |
2024–2100 b | 2486 | 11.14 | 0.000 | 0.54 |
1954–1987 | −78 | −1.19 | 0.233 | −0.14 |
1988–2023 | 405 | 5.74 | 0.000 | 0.55 |
2024–2068 a | 556 | 5.61 | 0.000 | 0.26 |
2069–2100 a | 133 | 2.24 | 0.025 | 0.13 |
2024–2063 b | 527 | 6.36 | 0.000 | 0.51 |
2064–2100 b | 496 | 6.74 | 0.000 | 0.52 |
Lake surface water temperature—Studzieniczne | ||||
1954–2023 | 1212 | 6.27 | 0.000 | 0.26 |
2024–2100 a | 2008 | 9.00 | 0.000 | 0.22 |
2024–2100 b | 2490 | 11.16 | 0.000 | 0.55 |
1954–1987 | −142 | −2.18 | 0.029 | −0.21 |
1988–2023 | 387 | 5.48 | 0.000 | 0.49 |
2024–2068 a | 552 | 5.57 | 0.000 | 0.26 |
2069–2100 a | 133 | 2.24 | 0.025 | 0.13 |
2024–2063 b | 529 | 6.39 | 0.000 | 0.52 |
2064–2100 b | 496 | 6.74 | 0.000 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, M.; Amnuaylojaroen, T.; Sojka, M. Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next? Resources 2024, 13, 149. https://doi.org/10.3390/resources13110149
Ptak M, Amnuaylojaroen T, Sojka M. Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next? Resources. 2024; 13(11):149. https://doi.org/10.3390/resources13110149
Chicago/Turabian StylePtak, Mariusz, Teerachai Amnuaylojaroen, and Mariusz Sojka. 2024. "Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next?" Resources 13, no. 11: 149. https://doi.org/10.3390/resources13110149
APA StylePtak, M., Amnuaylojaroen, T., & Sojka, M. (2024). Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next? Resources, 13(11), 149. https://doi.org/10.3390/resources13110149