Sustainability and Environmental Performance in Selective Collection of Residual Materials: Impact of Modulating Citizen Participation Through Policy and Incentive Implementation
Abstract
:1. Introduction
1.1. The Impacts of Municipalities’ Strategic Decisions
1.2. Sustainability and Environmental Performance Modelling
1.3. Waste Materials Management System Modelling
2. Materials and Methods
2.1. Model Overview
Raw Databases | Field Studies and Surveys |
---|---|
Geolocated addresses (Data covering all households in the study area) [64] | Detailed characterisation of materials produced by collection method and housing type [62,63] |
Accounting of citizen collection container types (Data covering all households in the study area) [60] | Report on tagged bins implementation in Beaconsfield [15,61,65] |
GPS tracking of collection trucks (Data covering all trucks in the study area for one year) [66] | Report on behaviours and attitudes of Quebec citizens [58] |
Timestamped records of truck weights and discharge types (Data covering all trucks in the study area for one year) [60,67] | Canadian census [59] |
WARM databases [25] | |
Results from previous work [56,57] |
- Socio-economic attributes (E): salary, dwelling size, gender and age of the waste management responsible party, education level, housing conditions;
- Type of residence: single-family (SF), multi-family (MF);
- Type of receptacles: bins (B), containers (C);
- Environmental attitudes segment (S): pro-environment (green [G]), sensitive to recycling barriers (yellow [Y]), and less engaged in recycling (red [R]);
- Reported habit of recycling (H): systematically, a lot, occasionally/rarely;
- Waste volume limit (): Maximum available volume allocated to each individual dwelling for waste disposal.
- Recyclable waste (RW): Plastic, metal, fibres, glass;
- Error waste (ERR): Non-recyclable plastic, non-recyclable metal, non-recyclable fibres, non-recyclable glass;
- Mixed waste (MW): Organic waste, others.
- Waste generation rate (): Quantity of generated waste of type “W”;
- Waste material density (): Density of material (m) including void space;
- Waste volume: In the bin/container (), generated during a specific day (), already present in the bin/container at the start of the day ();
- Filling level (FL): Filling level of the investigated bin/container;
- Behaviour intention: Waste sorting intention () or participating in the waste collection process ();
- Frequency of recycling habit (): Randomly allocated value from frequency distribution.
2.2. Mathematical Framework
2.3. Municipal Solid Waste Generation
2.4. Modelling Household Participation in Waste Collection: Filling Level Calculation and Intention Assessment
2.5. WARM Model Integration
3. Model Calibration: Assessing Participation Dynamics in Two Urban Contexts
3.1. Model Validation on Beaconsfield’s Data
3.2. Model Validation on Gatineau’s Data
4. Exploring Intervention Effects on Waste Collection Efficiency: A Gatineau Case Study
4.1. Case 1: Effects of Recyclable Waste Collection Frequency
4.2. Case 2: Effects of Mixed Waste Collection Frequency
5. Discussion
5.1. Constructing a Model Within a Local Context
5.2. Modifying the Collection Frequency
5.3. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobsen, L.F.; Pedersen, S.; Thøgersen, J. Drivers of and barriers to consumers’ plastic packaging waste avoidance and recycling—A systematic literature review. Waste Manag. 2022, 141, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, I.; Missios, P. Recycling and Waste Diversion Effectiveness: Evidence from Canada. Environ. Resour. Econ. 2005, 30, 221–238. [Google Scholar] [CrossRef]
- Noehammer, H.C.; Byer, P.H. Effect of Design Variables on Participation in Residential Curbside Recycling Programs. Waste Manag. Res. 1997, 15, 407–427. [Google Scholar] [CrossRef]
- Abbott, A.; Nandeibam, S.; O’Shea, L. Explaining the variation in household recycling rates across the UK. Ecol. Econ. 2011, 70, 2214–2223. [Google Scholar] [CrossRef]
- Leger. Accompagnement Dans L’identification des Obstacles Reliés à la Participation des Citoyens à Certains Programmes de Valorisation des Matières Résiduelles; Private Diagnostic Report; Leger: Gatineau, QC, Canada, 2013. [Google Scholar]
- Keramitsoglou, K.M.; Tsagarakis, K.P. Public participation in designing a recycling scheme towards maximum public acceptance. Resour. Conserv. Recycl. 2013, 70, 55–67. [Google Scholar] [CrossRef]
- Knussen, C.; Yule, F.; MacKenzie, J.; Wells, M. An analysis of intentions to recycle household waste: The roles of past behaviour, perceived habit, and perceived lack of facilities. J. Environ. Psychol. 2004, 24, 237–246. [Google Scholar] [CrossRef]
- Barr, S. Factors Influencing Environmental Attitudes and Behaviors: A U.K. Case Study of Household Waste Management. Environ. Behav. 2007, 39, 435–473. [Google Scholar] [CrossRef]
- Schilling, S.P.E. Curbside Recycling… Out with the Bins, in with the Carts; Solid Waste Agency of Northern Cook County: Glenview, IL, USA, 2001. [Google Scholar]
- Binder, K. The Effects of Replacing Dispersed Trash and Recycling Bins with Integrated Waste Receptacles on the Accuracy of Waste Sorting in an Academic Building. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, December 2012. Available online: https://scholarworks.wmich.edu/masters_theses/86 (accessed on 12 December 2023).
- Vu, H.L.; Ng, K.T.W.; Fallah, B.; Richter, A.; Kabir, G. Interactions of residential waste composition and collection truck compartment design on GIS route optimization. Waste Manag. 2020, 102, 613–623. [Google Scholar] [CrossRef]
- Vu, H.L.; Bolingbroke, D.; Ng, K.T.W.; Fallah, B. Assessment of waste characteristics and their impact on GIS vehicle collection route optimization using ANN waste forecasts. Waste Manag. 2019, 88, 118–130. [Google Scholar] [CrossRef]
- Bala, A.; Raugei, M.; Teixeira, C.A.; Fernández, A.; Pan-Montojo, F.; Fullana-I-Palmer, P. Assessing the Environmental Performance of Municipal Solid Waste Collection: A New Predictive LCA Model. Sustainability 2021, 13, 5810. [Google Scholar] [CrossRef]
- El Ganaoui-Mourlan, O.; Miliani, E.H.; Da Silva, D.C.; Couillandeau, M.; Gonod, C.; Miller, G. Design of a Flexible Hybrid Powertrain Using a 48 V-Battery and a Supercapacitor for Ultra-Light Urban Vehicles; SAE International: Warrendale, PA, USA, 2020; SAE Technical Paper 2020-01–0445. [Google Scholar]
- FCM-Fédération Canadienne des Municipalités–Fond Municipal Vert (FMV). Projet Pilote de la Collecte Sélective dans un Contexte de Collecte Intelligente Avec Tarification Incitative-Ville de Beaconsfield. EnviroRcube, Rapport Final-Étude FMV 15071, April 2018. Available online: https://www.beaconsfield.ca/images/stories/environmental-fields/WasteReduc/CollecteIntelligenteMatieresRecyclables_FMV15071_RapportFinal.pdf (accessed on 19 June 2024).
- Laurieri, N.; Lucchese, A.; Marino, A.; Digiesi, S. A Door-to-Door Waste Collection System Case Study: A Survey on its Sustainability and Effectiveness. Sustainability 2020, 12, 5520. [Google Scholar] [CrossRef]
- Teerioja, N.; Moliis, K.; Kuvaja, E.; Ollikainen, M.; Punkkinen, H.; Merta, E. Pneumatic vs. door-to-door waste collection systems in existing urban areas: A comparison of economic performance. Waste Manag. 2012, 32, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Punkkinen, H.; Merta, E.; Teerioja, N.; Moliis, K.; Kuvaja, E. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system. Waste Manag. 2012, 32, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Dolci, G.; Rigamonti, L.; Grosso, M. Life cycle assessment of the food waste management with a focus on the collection bag. Waste Manag. Res. 2021, 39, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Degli Esposti, A.; Magrini, C.; Bonoli, A. Door-to-door waste collection: A framework for the socio–Economic evaluation and ergonomics optimisation. Waste Manag. 2023, 156, 130–138. [Google Scholar] [CrossRef]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. J. Environ. Manag. 2019, 248, 109238. [Google Scholar] [CrossRef]
- Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total. Environ. 2021, 769, 144483. [Google Scholar] [CrossRef]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China–A review. Sci. Total. Environ. 2020, 737, 139745. [Google Scholar] [CrossRef]
- Campitelli, A.; Schebek, L. How is the performance of waste management systems assessed globally? A systematic review. J. Clean. Prod. 2020, 272, 122986. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA); Waste Reduction Model (WARM). May 2019. Available online: https://www.epa.gov/warm/versions-waste-reduction-model-warm#15 (accessed on 26 December 2023).
- Deus, R.M.; Mele, F.D.; Bezerra, B.S.; Battistelle, R.A.G. A municipal solid waste indicator for environmental impact: Assessment and identification of best management practices. J. Clean. Prod. 2020, 242, 118433. [Google Scholar] [CrossRef]
- Engelmann, P.d.M.; dos Santos, V.H.J.M.; da Rocha, P.R.; dos Santos, G.H.A.; Lourega, R.V.; de Lima, J.E.A.; Pires, M.J.R. Analysis of solid waste management scenarios using the WARM model: Case study. J. Clean. Prod. 2022, 345, 130687. [Google Scholar] [CrossRef]
- Asadollahi, A.; Tohidi, H.; Shoja, A. Sustainable waste management scenarios for food packaging materials using SimaPro and WARM. Int. J. Environ. Sci. Technol. 2022, 19, 9479–9494. [Google Scholar] [CrossRef]
- Joseph, L.P.; Prasad, R. Assessing the sustainable municipal solid waste (MSW) to electricity generation potentials in selected Pacific Small Island Developing States (PSIDS). J. Clean. Prod. 2020, 248, 119222. [Google Scholar] [CrossRef]
- Martins, M.A.d.B.; Crispim, A.; Ferreira, M.L.; dos Santos, I.F.; Melo, M.d.L.N.M.; Barros, R.M.; Filho, G.L.T. Evaluating the energy consumption and greenhouse gas emissions from managing municipal, construction, and demolition solid waste. Clean. Waste Syst. 2023, 4, 100070. [Google Scholar] [CrossRef]
- Abbasi, M.; El Hanandeh, A. Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Manag. 2016, 56, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Antanasijević, D.; Pocajt, V.; Popović, I.; Redžić, N.; Ristić, M. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain. Sci. 2013, 8, 37–46. [Google Scholar] [CrossRef]
- Wu, H.; Tao, F.; Yang, B. Optimization of Vehicle Routing for Waste Collection and Transportation. Int. J. Environ. Res. Public Health 2020, 17, 4963. [Google Scholar] [CrossRef]
- Kummer, Y.; Youhanan, L.; Hirsch, P. Operational analysis and optimization of a water-based municipal solid waste management system with hybrid simulation modeling. Sustain. Cities Soc. 2023, 99, 104890. [Google Scholar] [CrossRef]
- Xie, C.; Deng, X.; Zhang, J.; Wang, Y.; Zheng, L.; Ding, X.; Li, X.; Wu, L. Multi-period design and optimization of classified municipal solid waste supply chain integrating seasonal fluctuations in waste generation. Sustain. Cities Soc. 2023, 93, 104522. [Google Scholar] [CrossRef]
- Liao, N.; Lü, F.; Zhang, H.; He, P. Life cycle assessment of waste management in rural areas in the transition period from mixed collection to source-separation. Waste Manag. 2023, 158, 57–65. [Google Scholar] [CrossRef]
- Ferrara, I.; Missios, P. A Cross-Country Study of Household Waste Prevention and Recycling: Assessing the Effectiveness of Policy Instruments. Land Econ. 2012, 88, 710–744. [Google Scholar] [CrossRef]
- Huang, J.-C.; Halstead, J.M.; Saunders, S.B. Managing Municipal Solid Waste with Unit-Based Pricing: Policy Effects and Responsiveness to Pricing. Land Econ. 2011, 87, 645–660. [Google Scholar] [CrossRef]
- Kollikkathara, N.; Feng, H.; Yu, D. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues. Waste Manag. 2010, 30, 2194–2203. [Google Scholar] [CrossRef]
- Pinha, A.C.H.; Sagawa, J.K. A system dynamics modelling approach for municipal solid waste management and financial analysis. J. Clean. Prod. 2020, 269, 122350. [Google Scholar] [CrossRef]
- Karavezyris, V.; Timpe, K.-P.; Marzi, R. Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Math. Comput. Simul. 2002, 60, 149–158. [Google Scholar] [CrossRef]
- Ding, Z.; Gong, W.; Li, S.; Wu, Z. System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management. Sustainability 2018, 10, 2484. [Google Scholar] [CrossRef]
- Ouyang, M. Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 43–60. [Google Scholar] [CrossRef]
- Masad, D.; Kazil, J. MESA: An Agent-Based Modeling Framework. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 53–60. [Google Scholar]
- Borshchev, A.; Filippov, A. From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. In Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford, UK, 25–29 July 2004. [Google Scholar]
- Gan, V.J.; Cheng, J.C. Formulation and analysis of dynamic supply chain of backfill in construction waste management using agent-based modeling. Adv. Eng. Inform. 2015, 29, 878–888. [Google Scholar] [CrossRef]
- Shi, X.; Thanos, A.E.; Celik, N. Multi-objective agent-based modeling of single-stream recycling programs. Resour. Conserv. Recycl. 2014, 92, 190–205. [Google Scholar] [CrossRef]
- He, Z.; Xiong, J.; Ng, T.S.; Fan, B.; Shoemaker, C.A. Managing competitive municipal solid waste treatment systems: An agent-based approach. Eur. J. Oper. Res. 2017, 263, 1063–1077. [Google Scholar] [CrossRef]
- Meng, X.; Wen, Z.; Qian, Y. Multi-agent based simulation for household solid waste recycling behavior. Resour. Conserv. Recycl. 2018, 128, 535–545. [Google Scholar] [CrossRef]
- Tucker, P.; Smith, D. Simulating Household Waste Management Behaviour. JASS 1999, 2, 3. Available online: http://jasss.soc.surrey.ac.uk/2/3/3.html (accessed on 26 December 2023).
- Labelle, A.; Frayret, J.-M. Agent-Based Model for End-of-Life Product Flow Analysis. Resources 2018, 7, 42. [Google Scholar] [CrossRef]
- Labelle, A.; Frayret, J.-M. First-mile reverse logistics: An agent-based modelling and simulation application for glass bottle recovery. J. Clean. Prod. 2023, 422, 138574. [Google Scholar] [CrossRef]
- Walzberg, J.; Sethuraman, S.; Ghosh, T.; Uekert, T.; Carpenter, A. Think before you throw! An analysis of behavioral interventions targeting PET bottle recycling in the United States. Energy Res. Soc. Sci. 2023, 100, 103116. [Google Scholar] [CrossRef]
- Ma, H.; Li, M.; Tong, X.; Dong, P. Community-Level Household Waste Disposal Behavior Simulation and Visualization under Multiple Incentive Policies—An Agent-Based Modelling Approach. Sustainability 2023, 15, 10427. [Google Scholar] [CrossRef]
- Tong, X.; Nikolic, I.; Dijkhuizen, B.; Hoven, M.v.D.; Minderhoud, M.; Wäckerlin, N.; Wang, T.; Tao, D. Behaviour change in post-consumer recycling: Applying agent-based modelling in social experiment. J. Clean. Prod. 2018, 187, 1006–1013. [Google Scholar] [CrossRef]
- Fontaine, L.; Legros, R.; Frayret, J.-M. Assessing the Effect of Environmental Attitudes on Waste Material Flow Quality through Agent-Based Modelling of Citizen Source Separation Behaviour. J. Environ. Manag. 2024. (manuscript submitted). [Google Scholar]
- Fontaine, L.; Legros, R.; Frayret, J.-M. Solid waste generation prediction model framework using socioeconomic and demographic factors with real-time MSW collection data. Waste Manag. Res. 2024. [Google Scholar] [CrossRef]
- SOM. Portrait des Comportements et Attitudes des Citoyens Québécois à L’égard des 3RV (Profile of 3RV Behaviours and Attitudes Among Quebecers). RECYC-QUEBEC. 2015. Available online: https://www.recyc-quebec.gouv.qc.ca/sites/default/files/documents/etude-portrait-comportements-citoyens.pdf (accessed on 5 October 2015).
- Statistics Canada Gouvernement du Canada. Census Profile, 2016 Census. 8 February 2017. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm (accessed on 24 April 2023).
- de Gatineau, V. Plan de Gestion des Matières Résiduelles (PGMR) 2023–2029. Gatineau, PROJET DE PGMR 2023–2029. 2023. Available online: https://www.recyc-quebec.gouv.qc.ca/sites/default/files/documents/villedegatineau-pgmr-2023-2029.pdf (accessed on 1 April 2023).
- Bourg, M.-C. Implantation de la Collecte Intelligente à la Ville de Beaconsfield-Rapport Final; RECYC-QUÉBEC et Eco Entreprises Québec: Beaconsfield, UK, 2017; RECYC-QUÉBEC-numéro de l’entente 2173. [Google Scholar]
- Proulx, B.; Paquet, J.; Choquette, R.; Marcoux, S.; Pelletier, L.-P. Caractérisation des Matières Résiduelles Résidentielles des Multilogements de la Ville de Gatineau-Été 2017 (Characterization of Residential Waste from Gatineau’s Multi-Unit Dwellings-Summer 2017); NI Corporation: Gatineau, QC, Canada, 2017; Characterization Report. [Google Scholar]
- RECYC-QUÉBEC. Caractérisation des Matières Résiduelles du Secteur Municipal 2015–2018 (Characterization of Residual Materials in the Municipal Sector 2015–2018). RECYC-QUÉBEC et Eco Entreprises Québec, Synthesis Report. 2021. Available online: https://www.recyc-quebec.gouv.qc.ca/sites/default/files/documents/caracterisation-secteur-municipal-2015-2018.pdf (accessed on 14 June 2023).
- Géoindex. Geoindex: Shared Platform of Geospatial Data and Aerial Photographs. January 2024. Available online: https://geoapp.bibl.ulaval.ca (accessed on 31 April 2024).
- Bourg, M.-C.; Nafekh, E. Essai Pilote de Réduction des Déchets de la Ville de Beaconsfield. EnviroRcube, Rapport Final-Étude FMV 12011. Février 2015. Available online: https://www.beaconsfield.ca/images/stories/environmental-fields/WasteReduc/pilote_reduction_dechets_rapport_final_2015vf.pdf (accessed on 24 April 2023).
- FOCUS Optimization. Waste Collection Trucks’ Position and Status from 2017 to 2020 for Gatineau’s Municipality. Retrived 2021. Available online: https://focusoptimization.com/en/industries/waste-and-recycling/ (accessed on 5 June 2020).
- Sigmasys. Tonnage des Entrées par Produit 2018/01/01 au 2018/12/31. Available online: https://sigmasys.net/en/sigmarecyc-waste-material/ (accessed on 5 June 2020).
- Tanguay-Rioux, F.; Héroux, M.; Legros, R. Physical properties of recyclable materials and implications for resource recovery. Waste Manag. 2021, 136, 195–203. [Google Scholar] [CrossRef]
- WRAP. Summary Report–Material Bulk Densities. WRAP and Resource Futures, Project Code: ROT039. 2009. Available online: https://wrap.org.uk/sites/default/files/2021-02/WRAP-bulk-density-summary-report-Jan2010.pdf (accessed on 21 January 2024).
- Lellman, G.; Farnan, T.; Monaco, B. Volume-to-Weight Conversions. Minnesota Pollution Control Agency, Document Number: w-sw2-08. September 2021. Available online: https://www.pca.state.mn.us/sites/default/files/w-sw2-08.pdf (accessed on 21 January 2024).
- USEPA. Volume-to-Weight Conversion Factors. Office of Resource Conservation and Recovery. April 2016. Available online: https://www.epa.gov/sites/default/files/2016-04/documents/volume_to_weight_conversion_factors_memorandum_04192016_508fnl.pdf (accessed on 21 January 2024).
- Asnani, P.U.; Zurbrugg, C. Improving Municipal Solid Waste Management in India: A Sourcebook for Policymakers and Practitioners; World Bank Publications: Chicago, IL, USA, 2007. [Google Scholar]
- Facchini, F.; Digiesi, S.; Vitti, M. Waste collection with smart bins and residual capacity forecasting: The case of an Apulia Town. In Proceedings of the 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 712–717. [Google Scholar]
- Lagneau, J. Étude Multi-Échelles des Coûts de Gestion de la Matière Résiduelle Organique au Québec. Master’s Thesis; École Polytechnique de Montréal: Montreal, QC, Canada, 2018. Available online: https://publications.polymtl.ca/3673/ (accessed on 18 March 2019).
- Sailer, G.; Eichermüller, J.; Poetsch, J.; Paczkowski, S.; Pelz, S.; Oechsner, H.; Müller, J. Characterization of the separately collected organic fraction of municipal solid waste (OFMSW) from rural and urban districts for a one-year period in Germany. Waste Manag. 2021, 131, 471–482. [Google Scholar] [CrossRef] [PubMed]
- AECOM. Inventaires des Émissions de Gaz à Effet et de Serre–2015. Ville de Gatineau, Gatineau, Rapport Ʈ nal 60509721. January 2017. Available online: https://www.gatineau.ca/docs/publications_cartes_statistiques_donnees_ouvertes/publications/20211015_inventaires_emissions_gaz_effet_serre_2015.pdf (accessed on 22 January 2024).
- Runsewe, T.; Celik, N. Assessment of the Impact of the Single Stream Recycling on Paper Contamination in Recovery Facilities and Paper Mills; University of Miami: Coral Gables, FL, USA, 2021; DOE-MIAMI-0007897. [Google Scholar] [CrossRef]
- Eriksen, M.; Pivnenko, K.; Olsson, M.; Astrup, T. Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic. Waste Manag. 2018, 79, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Bapat, S.; Brandes, W.F.; Rice, E.; Castaldi, M.J. Technical Feasibility of Zero Waste for Paper and Plastic Wastes. Waste Biomass Valor 2019, 10, 1355–1363. [Google Scholar] [CrossRef]
- Ceylan, Z. Estimation of municipal waste generation of Turkey using socio-economic indicators by Bayesian optimization tuned Gaussian process regression. Waste Manag. Res. 2020, 38, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Ceschi, A.; Dorofeeva, K.; Sartori, R.; Dickert, S.; Scalco, A.; Bajo, J.; Hernández, J.Z.; Mathieu, P.; Campbell, A.; Fernández-Caballero, A.; et al. A Simulation of Householders’ Recycling Attitudes Based on the Theory of Planned Behavior. In Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability; Springer International Publishing: Cham, Switzerland, 2015; pp. 177–184. [Google Scholar] [CrossRef]
- Tong, X.; Yu, H.; Han, L.; Liu, T.; Dong, L.; Zisopoulos, F.; Steuer, B.; de Jong, M. Exploring business models for carbon emission reduction via post-consumer recycling infrastructures in Beijing: An agent-based modelling approach. Resour. Conserv. Recycl. 2023, 188, 106666. [Google Scholar] [CrossRef]
- Tucker, P. Understanding Household Waste Prevention Behaviour–Technical Report No.3–A Conceptual and Operational model of Household; University of Paisley Environmental Technology Group: Paisley, Scotland, 2007; Interim Research Report WR0112. Available online: http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=14681 (accessed on 23 March 2018).
- Xia, W.; Jiang, Y.; Chen, X.; Zhao, R. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Manag. Res. 2022, 40, 609–624. [Google Scholar] [CrossRef]
- Weng, Y.-C.; Fujiwara, T. Examining the effectiveness of municipal solid waste management systems: An integrated cost–benefit analysis perspective with a financial cost modeling in Taiwan. Waste Manag. 2011, 31, 1393–1406. [Google Scholar] [CrossRef]
Description | Validation | Training |
---|---|---|
Simulated population | City of Gatineau | City of Beaconsfield |
Simulation time | 1 year | 1 year |
Number of agents | 126,476 agents separated into 41 geographical zones | 6828 agents not separated into geographical zones |
Average agents per simulated zone | 3000 agents per zone | 6828 agents |
Symbol | Variability | Description (Number of Parameters) |
---|---|---|
Initialisation | ||
Constant | Probability of belonging to the segment “S” (3) | |
Constant | Random group assignment (1) | |
H | Constant | Reported action by the dwelling about their recycling habit based on their segment “S” (3) |
Waste generation | ||
Variable | Waste “W” generation rate for a specific day (3) | |
Sorting behaviour | ||
Variable | Intention to put the waste “W” in the recycling bin (3) | |
Variable | Random sorting behaviour assignment for each waste “W” (3 per time loop) | |
Variable | Randomly allocated value from frequency distribution of the agent habit modulating the recycling intention “IRW” (1) | |
Calibrated constant | Calibrated intention modulating parameter for the waste “W” and segment “S” of agent (9) | |
Calibrated constant | Calibrated intention modulating parameter for the waste “W” to take into account the presence of multi-family dwellings (3) | |
Calibrated constant | Calibrated intention modulating parameter for the waste “W” to take into account the presence of containers (3) |
Symbol | Variability | Description (Number of Parameters per Collect and Time Loop) |
---|---|---|
Variable | Intention to participate in the “WC” collect (1) | |
Variable | Random participation behaviour assignment (1) | |
Variable | Filling level of the investigated bin/container (1) | |
Variable | Waste volume generated during a specific day (1) | |
Variable | Waste volume already present in the bin/container at the start of the day (1) | |
Variable | Waste volume present in the bin/container at a specific time (1) | |
Constant | Max available volume for a dwelling (1) | |
Variable | parameter (1) | |
Calibrated constant | ) (4) | |
Calibrated constant | Calibrated parameter for the collect “WC” and environmental attitude “S” (6) |
Hypothesis | Impacts |
---|---|
No littering and compaction by the citizen | Due to insufficient data, the possibility that littering may extend a household’s collection time, with consequential impacts on the environment, citizen health, and water contamination [72,73], is disregarded. |
will include the waste added by other agents before, but not after, the current agent. . | |
Upon observing a full bin, agents retain their waste until the following collection and deposit the accumulated waste once the bin is empty. | Limited information is available on the behaviour. Therefore, the sequence of actions is a hypothesis that may introduce uncertainty. |
Tracks previously generated volumes. | |
Intention to participate in the current collection is 1 for an agent with a full bin. | Agents forgetting to place their bins out on the correct day despite a full bin are disregarded. |
After retaining waste for additional collection, if the bin still overflows, the waste will be placed in another collection path. | The impact of bin overflow on the accuracy of Binder’s sorting [10] is depicted. However, the sequence of actions is a hypothesis that may introduce uncertainty. Infinite accumulation of waste by a household is avoided. |
Symbol | Unit | Description |
---|---|---|
ton | Weight of waste material | |
dwelling | Number of dwellings collected | |
h | Time | |
km | Distance | |
km/h | Travel speed during the transport phase | |
unit/h/ton | Fuel consumption per unit of time and waste during the collection phase | |
unit/km/ton | Fuel consumption per unit of distance and waste during the transport phase | |
MtCO2eq/unit | CO2 equivalent per fuel unit used | |
BTU/unit | Fuel energy content |
Dwelling Types | Collection Time (Seconds) |
---|---|
Single-family homes (SF,B) | 28.8 |
Multi-family buildings collected by bins (MF,B) | 5.4 |
Multi-family buildings collected by container (MF,C) | 76.4 |
City-Specific Parameters | Parameters Constant Across All Cities | Adapted Parameters for New Cities |
---|---|---|
) and type | ) calculation | ) |
Collection Frequency | ) | |
Waste characterisation data | ||
Geolocated addresses | (calibrated with this process) | |
Geolocated socio-economic and demographic characteristics of the population | ) (calibrated with this process) | |
) | ||
) |
Parameters | Actual Value [58,62] | Simulated | %Error | |
---|---|---|---|---|
Mean | STD | |||
Recyclable waste (t/year) | 2299 | 2253 | 5 | −2.01% |
Mixed waste (t/year) | 4694 | 4657 | 6 | −0.79% |
Recyclable waste recovery rates | 78% | 77.1% | 0.2% | −1.21% |
Recyclable waste contamination | 9.2% | 10.18% | 0.07% | 10.7% |
Calibrated Parameters | Beaconsfield | Gatineau | |||||||
---|---|---|---|---|---|---|---|---|---|
Actual Value [15,58] | Simulated | %Error | Actual Value [42] | Simulated | %Error | ||||
Mean | STD | Mean | STD | ||||||
Collect participation | Mixed waste | 68% | 66.2% | 1.2% | −2.7% | 74.5% | 6.0% | ||
Recycling waste | 63.8% | 61.7% | 0.4% | −3.2% | 74% | 71.8% | 6.3% | −3.0% | |
Recycling Bin Filling level (FL) | 0% to 50% * | 40% | 41.0% | 0.3% | 2.5% | 65.6% | 4.7% | ||
0% to 25% | 21% | 21.8% | 0.2% | 3.9% | 39.9% | 1.8% | |||
25% to 50% | 19% | 19.2% | 0.1% | 1.0% | 25.7% | 2.9% | |||
50% to 100% * | 60% | 59.0% | 0.2% | −1.7% | 34.4% | 1.1% | |||
50% to 75% | 26% | 31.2% | 0.1% | 20.1% | 25.8% | 0.5% | |||
75% to 100% | 34% | 27.8% | 0.1% | −18.3% | 8.6% | 0.6% |
Parameters | Estimation | Simulated | %Error | Sources |
---|---|---|---|---|
Recyclable waste (1000 Mt/year) | 26.9 | 28.8 ± 0.4 | 7.2% | [60] |
Mixed waste (1000 Mt/year) | 59.1 | 51.9 ± 0.7 | −12.2% | [60] |
Recyclable waste recovery rates (%) | 83.5 | 82.1 ± 5.0 | −1.69% | [62] |
Recyclable waste contamination (%) | 13.6 | 15.6 ± 0.3 | 14.7% | [62] |
Recycling waste density (kg/m3) | 65 ± 22 | 65.3 ± 2.8 | 0.5% | [68,69,70,71] |
Mixed waste density (kg/m3) | 131 ± 47 | 113.7 ± 4.6 | −13.2% | [68,69,70,71] |
Trucks used per week (trucks/week) | 144 ± 34 | 133 ± 5 | −7.5% | [66] |
CO2 generated by the mixed waste stream (1000 MtCO2eq) | 91.7 | 94.3 ± 1.7 | 2.9% | [76] |
Case 1 | Case 2 | ||
---|---|---|---|
Collection frequency (collect/week) | Mixed waste stream | 1/1 | 2/1, 1/1, 1/2, 1/3, 1/4, 1/5 |
Recycling stream | 2/1, 1/1, 1/2, 1/3, 1/4, 1/5 | 1/1 | |
Receptacle size | Container: 1500 L to 6000 L—Based on geolocalised data | ||
Truck fuel type | Diesel | ||
Simulation time | 1 year | ||
Geographical breakdown | 41 zones with on average 3000 dwellings (agents) per zones | ||
Repetition | 10 repetitions per zones and variating parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontaine, L.; Legros, R.; Frayret, J.-M. Sustainability and Environmental Performance in Selective Collection of Residual Materials: Impact of Modulating Citizen Participation Through Policy and Incentive Implementation. Resources 2024, 13, 151. https://doi.org/10.3390/resources13110151
Fontaine L, Legros R, Frayret J-M. Sustainability and Environmental Performance in Selective Collection of Residual Materials: Impact of Modulating Citizen Participation Through Policy and Incentive Implementation. Resources. 2024; 13(11):151. https://doi.org/10.3390/resources13110151
Chicago/Turabian StyleFontaine, Laurie, Robert Legros, and Jean-Marc Frayret. 2024. "Sustainability and Environmental Performance in Selective Collection of Residual Materials: Impact of Modulating Citizen Participation Through Policy and Incentive Implementation" Resources 13, no. 11: 151. https://doi.org/10.3390/resources13110151
APA StyleFontaine, L., Legros, R., & Frayret, J.-M. (2024). Sustainability and Environmental Performance in Selective Collection of Residual Materials: Impact of Modulating Citizen Participation Through Policy and Incentive Implementation. Resources, 13(11), 151. https://doi.org/10.3390/resources13110151