The Impact of Hard Coal Mining on the Long-Term Spatio-Temporal Evolution of Land Subsidence in the Urban Area (Bielszowice, Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area—Outline of Mining History in the Study Area
2.2. Research Methods
3. Results
3.1. Changes in Relief
3.2. Changes in Land Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Candela, T.; Koster, K. The many faces of anthropogenic subsidence. Science 2022, 376, 1381–1382. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Guerrero, M.A.; Carrillo-Rivera, J.J. Land Subsidence in Urban Environment. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, D.G.; Wakshal, E. The Subsidence Phenomenon Throughout the World. In Land Subsidence Analysis in Urban Areas; Springer Environmental Science and Engineering; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Gruber, S. Ground subsidence and heave over permafrost: Hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement. Cryosphere 2020, 14, 1437–1447. [Google Scholar] [CrossRef]
- Dulias, R. Changes in Morphometric Parameters of Terrain Caused by Mining. In The Impact of Mining on the Landscape; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 83–93. [Google Scholar]
- Available online: https://www.usgs.gov/mission-areas/water-resources/science/land-subsidence#overview (accessed on 20 September 2024).
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J. Sinking coastal cities. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 189–198. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Galloway, D.L.; Coplin, L.S.; Ingebritsen, S.E. Effects of Land Subsidence in the Greater Houston Area. In Water Science and Technology Library; Agthe, D.E., Billings, R.B., Buras, N., Eds.; Managing Urban Water Supply; Springer: Dordrecht, The Netherlands, 2003; Volume 46. [Google Scholar] [CrossRef]
- Zhang, M.; Burbey, T.J. Inverse modelling using PS-InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada. Hydrol. Process. 2016, 30, 4494–4516. [Google Scholar] [CrossRef]
- Ikuemonisan, F.E.; Ozebo, V.C. Characterisation and Mapping of Land Subsidence Based on Geodetic Observations in Lagos, Nigeria. Geod. Geodyn. 2020, 11, 151–162. [Google Scholar] [CrossRef]
- Parsons, T.; Wu, P.-C.; Wei, M.; D’Hondt, S. The weight of New York City: Possible contributions to subsidence from anthropogenic sources. Earth’s Future 2023, 11, e2022EF003465. [Google Scholar] [CrossRef]
- Johnson, K.S. Subsidence hazards due to evaporite dissolution in the United States. Environ. Geol. 2004, 48, 395–409. [Google Scholar] [CrossRef]
- Martinec, P.; Schejbalova, B. History and environmental impact of mining in the Ostravw-Karvina Coal Field (Upper Silesia Coal basin, Czech Republic). Geol. Belg. 2004, 7, 215–223. [Google Scholar]
- Singh, K.B. Pot-hole subsidence in Son-Mahanadi Master Coal Basin. Eng. Geol. 2007, 89, 88–97. [Google Scholar] [CrossRef]
- Mancini, F.; Stecchi, F.; Zanni, M.; Gabbianelli, G. Monitoring ground subsidence induced by salt mining in the city of Tuzla (Bosnia and Herzegovina). Environ. Geol. 2009, 58, 381–389. [Google Scholar] [CrossRef]
- Wu, Q.; Pang, J.; Qi, S.; Li, Y.; Han, C.; Liu, T.; Huang, L. Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environ. Earth Sci. 2009, 59, 783–791. [Google Scholar] [CrossRef]
- Akcin, H.; Kutoglu, H.S.; Kemaldere, H.; Deguchi, T.; Koksal, E. Monitoring subsidence effects in the urban area of Zonguldak Hard coal Basin of Turkey by InSAR-GIS integration. Nat. Hazards Earth Syst. Sci. 2010, 10, 1807–1814. [Google Scholar] [CrossRef]
- Harnischmacher, S. Quantification of mining subsidence in the Ruhr District (Germany). Géomorphol. Relief Process. Environ. 2010, 16, 261–274. [Google Scholar] [CrossRef]
- Can, E.; Kuscu, S.; Mekik, C. Determination of underground mining induced displacements using GPS observations in Zonguldak-Kozlu Hard Coal Basin. Int. J. Coal Geol. 2012, 89, 62–69. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Křístková, V.; Fuka, M.; Kubečka, K.; Bouchal, T. An indicative method for determination of the most hazardous changes in slopes of the subsidence basins in underground coal mining area in Ostrava (Czech Republic). Environ. Monit. Assess. 2013, 185, 509–522. [Google Scholar] [CrossRef]
- Abdikan, S.; Arikan, M.; Sanli, F.B.; Cakirm, Z. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Chang, L.; Hanssen, R. Detection of cavity migration and sinkhole risk using radar interferometric time series. Remote Sens. Environ. 2014, 147, 56–64. [Google Scholar] [CrossRef]
- Harnischmacher, S.; Zepp, H. Mining and its impact on the earth surface in the Ruhr District (Germany). Z. Geomorphol. 2014, 58, 3–22. [Google Scholar] [CrossRef]
- Nádudvari, Á. Using radar interferometry and SBAS technique to detect surface subsidence relating to coal mining in Upper Silesia from 1993–2000 and 2003–2010. Environ. Socio-Econ. Stud. 2016, 4, 24–34. [Google Scholar] [CrossRef]
- Donnelly, L. Coal mining subsidence in the UK. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2020, 29, 291–309. [Google Scholar] [CrossRef]
- Guzy, A.; Malinowska, A.A. Assessment of the impact of the spatial extent of land subsidence and aquifer system drainage induced by underground mining. Sustainability 2020, 12, 7871. [Google Scholar] [CrossRef]
- Sopata, P.; Stoch, T.; Wojcik, A.; Mrochen, D. Land surface subsidence due to mining-induced tremors in the upper Silesian coal basin (Poland)—Case study. Remote Sens. 2020, 12, 3923. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Li, H.Z.; Zhang, H.J.; Zhang, Y.W.; Zhang, X.W. Improving reliability of prediction results of mine surface subsidence of Northern Pei County for reusing land resources. Appl. Sci. 2020, 10, 8385. [Google Scholar] [CrossRef]
- Zheng, L.P.; Zhu, L.; Wang, W.; Guo, L.; Chen, B.B. Land subsidence related to coal mining in China revealed by L-band InSAR analysis. Int. J. Environ. Res. Public Health 2020, 17, 1170. [Google Scholar] [CrossRef]
- Dang, V.K.; Nguyen, T.D.; Dao, N.H.; Duong, T.L.; Dinh, X.V.; Weber, C. Land subsidence induced by underground coal mining at Quang Ninh, Vietnam: Persistent scatterer interferometric synthetic aperture radar observation using Sentinel-1 data. Int. J. Remote Sens. 2021, 42, 3563–3582. [Google Scholar] [CrossRef]
- Vassileva, M.; Al-Halbouni, D.; Motagh, M.; Walter, T.R.; Dahm, T.; Wetzel, H. A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil. Sci. Rep. 2021, 11, 7704. [Google Scholar] [CrossRef]
- Raju, A.; Mehdi, K. SBAS-InSAR analysis of regional ground deformation accompanying coal fires in Jharia Coalfield, India. Geocarto Int. 2023, 38, 2167004. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Hydrogeological Hazards in Open Pit Coal Mines–Investigating Triggering Mechanisms by Validating the European Ground Motion Service Product with Ground Truth Data. Water 2023, 15, 1474. [Google Scholar] [CrossRef]
- Jaros, J. Słownik Historyczny Kopalń Węgla na Ziemiach Polskich. [Historical Dictionary of Coal Mines in Poland]; “Śląsk” Publishing House: Katowice, Poland, 1984; pp. 1–198. [Google Scholar]
- Frużyński, A. Kopalnie węgla kamiennego w Polsce [Hard coal mines in Poland]; Księży Młyn Publishing House: Łódź, Poland, 2012. (In Polish) [Google Scholar]
- Runge, J. Złożony Układ Osadniczy—Tradycyjny Region Ekonomiczny—Przestrzeń Społeczno-Kulturowa [Eng. Complex Settlement Patern—Traditional Economic Region—Socio-Cultural Space]; University of Silesia Publishing House: Katowice, Poland, 2020. [Google Scholar] [CrossRef]
- Krzysztofik, R. The socio-economic transformation of the Katowice conurbation in Poland. In Growth and Change in Post-Socialist Cities of Central Europe; Cudny, W., Kunc, J., Eds.; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2021; pp. 195–2016. [Google Scholar]
- Solarski, M.; Krzysztofik, R. Is the Naturalization of the Townscape a Condition of De-Industrialization? An Example of Bytom in Southern Poland. Land 2021, 10, 838. [Google Scholar] [CrossRef]
- Szypuła, B. Digital adaptation of the Geomorphological Map of Upper Silesian Industrial Region, Poland (1:50,000)—Old map new possibilities. J. Maps 2020, 16, 614–624. [Google Scholar] [CrossRef]
- Dulias, R. Upper Silesian Region—An Example of Large-Scale Transformation of Relief by Mining. In World Geomorphological Landscapes; Migoń, P., Jancewicz, K., Eds.; Landscapes and Landforms of Poland; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Solarski, M. Anthropogenic transformations of the Bytom area relief in the period of 1883–1994. Environ. Socio-Econ. Stud. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Jankowski, A.T.; Molenda, T.; Rzetala, M. Reservoirs in subsidence basins and depression hollows in the Silesian Upland—Selected hydrological matters. Limnol. Rev. 2001, 1, 143–150. [Google Scholar]
- Machowski, R.; Rzetala, M.A.; Rzetala, M. Transformation of lakes in subsidence basins in the Silesian Upland (Southern Poland). In Proceedings of the 12th Intenational Multidiscyplinary Scientific Geoconference SGEM 2012, Albena, Bulgaria, 17–23 June 2012; Volume 3, pp. 895–901. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.A. Morpho- and hydrogenesis of water bodies in subsidence basins as exemplified by water bodies in Zabrze, Upper Silesia (Southern Poland). Z. Geomorphol. 2014, 58, 471–483. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M. Water bodies in subsidence basins in the silesian upland as an example of anthropogenic change in the natural environment. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2014, Albena, Bulgaria, 17–26 June 2014; Volume 2, pp. 1059–1066. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.A.; Rzetala, M.; Solarski, M. Geomorphological and Hydrological Effects of Subsidence and Land use Change in Industrial and Urban Areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric changes in urban areas resulting from multiple years of mining activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef]
- Lamparska, M. Post-industrial Cultural Heritage Sites in the Katowice conurbation, Poland. Environ. Socio-Econ. Stud. 2013, 1, 36–42. [Google Scholar] [CrossRef]
- Ruda Śląska. Available online: http://www.rudaslaska.pl/theme/rudaslaska/uploads/LPR-akt.pdf (accessed on 20 September 2024).
- Wyczółkowski, J. Detailed Geological Map of Poland, 1:50,000, Sheet 942 Zabrze (M-34-62-B); Polish Geological Institute: Warsaw, Poland, 2013. [Google Scholar]
- Stec, K.; Wojtecki, Ł. Characteristics of the mine tremor source mechanism associated with the mining in the seam 510, the longwall 502 in the “Bielszowice” Coal Mine. Res. Rep. Min. Environ. 2011, 10, 61–77. Available online: https://kwartalnik.gig.eu/previous-title/charakterystyka-mechanizmu-ognisk-wstrzasow-gorotworu-zwiazanych-z-eksploatacja (accessed on 25 September 2024).
- Wojtecki, Ł.; Gołda, I. Rockburst hazard and rockburst prevention during longwall mining of coal seam no. 507 at large depth in Ruda Hard Coal Mine Part Bielszowice. Pol. Min. Rev. J. Pol. Assoc. Min. Eng. Tech. 2019, 75, 10–17. Available online: https://sitg.pl/services/przeglad-gorniczy-12-2019/ (accessed on 25 September 2024).
- Rzetala, M.A.; Machowski, R.; Solarski, R.M. Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas. Water 2024, 16, 3280. [Google Scholar] [CrossRef]
- Szpetkowski, S. Characteristics of the impact of mining operations on the rock mass and the ground surface. In Surface Protection Against Mining Damage; “Śląsk” Publisher: Katowice, Poland, 1980; pp. 39–77. [Google Scholar]
- Topographic map (Topographische karte), 1:25,000. Messtischblatt, Gleiwitz 3352, Schwientochlowitz 3353, Berlin (1882–1883).
- Jankowski, W. Niemiecka mapa w skali 1:25,000 na terenach polskich na wschód od Odry i Nysy [German map at a scale of 1:25,000 in the Polish territory east of the Oder and Neisse]. Przegl. Geod. 1961, 33, 417–458. [Google Scholar]
- Konias, A. Kartografia Topograficzna Państwa i Zaboru Pruskiego: Od Połowy XVIII Wieku do Połowy XX Wieku [Topographic Cartography of the State and the Prussian Partition from the Second Half of the 18th Century to the Middle of the 20th Century]; Pomeranian Academy in Słupsk Publishing House: Słupsk, Poland, 2010; pp. 1–232. [Google Scholar]
- Mazurek, K. Wpływ eksploatacji węgla kamiennego na ukształtowanie powierzchni wybranych fragmentów miasta Ruda Śląska w latach 1975–2011. [The impact of hard coal exploitation on the terrain of selected parts of the city of Ruda Śląska in the years 1975–2011]. Acta Geogr. Silesiana 2014, 15, 13–30. [Google Scholar]
- Terrone, M.; Piana, P.; Paliaga, G.; D’Orazi, M.; Faccini, F. Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas. ISPRS Int. J. Geo-Inf. 2021, 10, 349. [Google Scholar] [CrossRef]
- Henselowsky, F.; Rölkens, J.; Kelterbaum, D.; Bubenzer, O. Anthropogenic relief changes in a long-lasting lignite mining area (‘Ville’, Germany) derived from historic maps and digital elevation models. Earth Surf. Process. Landf. 2021, 46, 1725–1738. [Google Scholar] [CrossRef]
- Jancewicz, K.; Traczyk, A.; Migoń, P. Landform modifications within an intramontane urban landscape due to industrial activity, Wałbrzych, SW Poland. J. Maps 2021, 17, 194–201. [Google Scholar] [CrossRef]
- Wita, P.; Szafraniec, J.E.; Absalon, D.; Woźnica, A. Lake bottom relief reconstruction and water volume estimation based on the subsidence rate of the post-mining area (Bytom, Southern Poland). Sci. Rep. 2024, 14, 5230. [Google Scholar] [CrossRef]
- Deng, J. Reconstruction of coastline changes by the comparisons of historical maps at the Pomeranian Bay, Southern Baltic Sea. In Coastal Research Library; Coastline Changes of the Baltic Sea from South to East; Harff, J., Furmańczyk, K., von Storch, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 19, pp. 271–287. [Google Scholar] [CrossRef]
- Sobala, M.; Rahmonov, O.; Myga-Piatek, U. Historical and contemporary forest ecosystem changes in the Beskid Mountains (southern Poland) between 1848 and 2014. iForest 2017, 10, 939–947. [Google Scholar] [CrossRef]
- Popelková, R.; Mulková, M. The mining landscape of the Ostrava-Karviná coalfield: Processes of landscape change from the1830s to the beginning of the 21st century. Appl. Geogr. 2018, 90, 28–43. [Google Scholar] [CrossRef]
- Majewska, A. Możliwości identyfikacji reliktów wyludnionych wiejskich jednostek osadniczych i przekształceń zachodzących w ich obrębie w świetle nieinwazyjnych metod i technik badawczych—Studium wsi Bartki z tereny dawnych Prus Wschodnich [Possibilities of identifying the relics and transformations of depopulated settlement units in the light of non-invasive research methods and techniques – the case study of Bartki village from the area of former East Prussia]. Pr. Geogr. 2022, 169, 7–42. [Google Scholar]
- Sobala, M. Do historical maps show the maximal anthropopressure in the Carpathians? J. Mt. Sci. 2021, 18, 2184–2200. [Google Scholar] [CrossRef]
- Sobala, M. Reconstructing of historical land cover based on contemporary cartographical materials. J. Hist. Geogr. 2024, 84, 14–26. [Google Scholar] [CrossRef]
- Czajka, A.; Rahmonov, O.; Szypuła, B. The Natural Consequences of Land Use Change on Transformation and Vegetation Development in the Upper Odra Floodplain. Water 2023, 15, 3493. [Google Scholar] [CrossRef]
- Blachowski, J.; Milczarek, W. Analysis of surface changes in the Walbrzych hard coal mining grounds (SW Poland) between 1886 and 2009. Geol. Q. 2014, 58, 353–367. [Google Scholar] [CrossRef]
- Grabska-Szwagrzyk, E.; Jakiel, M.; Keeton, W.; Kozak, J.; Kuemmerle, T.; Onoszko, K.; Ostafin, K.; Shahbandeh, M.; Szubert, P.; Szwagierczak, A.; et al. Historical maps improve the identification of forests with potentially high conservation value. Conserv. Lett. 2024, 17, e13043. [Google Scholar] [CrossRef]
- Lieskovský, J.; Kaim, D.; Balázs, P.; Boltižiar, M.; Chmiel, M.; Grabska, E.; Király, G.; Konkoly-Gyuró, É.; Kozak, J.; Antalová, K.; et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 2018, 14, 644–651. [Google Scholar] [CrossRef]
- Rurek, M.; Gonia, A.; Hojan, M. Environmental and Socio-Economic Effects of Underground Brown Coal Mining in Piła Młyn (Poland). Land 2022, 11, 219. [Google Scholar] [CrossRef]
- Jakiel, M.; Kaim, D.; Ostafin, K. Long-Term Landscape Changes in the Ojców National Park (Poland) and Its Surroundings: Implications for the Effectiveness of Buffer Zones. Sustainability 2024, 16, 6649. [Google Scholar] [CrossRef]
- Topographic map of Poland, 1: 10,000. Zabrze—Makoszowy M-34-62-B-a-3, Ruda Śląska M-34-62-B-a-4, (Chief Land Surveyor, 1993).
- Geoportal. Available online: https://www.geoportal.gov.pl/pl/dane/dane-pomiarowe-lidar-lidar/ (accessed on 20 November 2024).
- Affek, A. Airborne laser scanning (ALS) in terrain modelling—New opportunities and pitfalls. Probl. Landsc. Ecol. 2014, 38, 217–236. [Google Scholar]
- Geoportal. Available online: https://www.geoportal.gov.pl/pl/dane/numeryczny-model-terenu-nmt/ (accessed on 21 November 2024).
- Aerial photos 1:5000: M-34-62-B-a-3-2, M-34-62-B-a-3-4, M-34-62-B-a-4-1, M-34-62-B-a-4-2, M-34-62-B-a-4-3, M-34-62-B-a-4-4. 2021.
- Mazurek, K. Rozwój górnictwa węgla kamiennego w Rudzie Śląskiej od XVIII wieku do czasów współczesnych [Development of hard coal mining in Ruda Śląska from the 18th century to the present day]. Z Badań Nad Wpływem Antropopresji Na Sr. 2014, 15, 71–79. [Google Scholar]
- Machowski, R. Changes in the Landform and Water Conditions of the Industrialized Urban Area as a Result of Mining Activities. Land 2022, 11, 1710. [Google Scholar] [CrossRef]
- Beckendam, R.F.; Pottgens, J.J. Ground movements over the coal mines of southern Limburg, the Netherlands, and their relation to rising mine waters. Proc. Int. Assoc. Hydrol. Sci. 1995, 234, 3–12. [Google Scholar]
- Price, S.J.; Ford, J.R.; Cooper, A.H.; Neal, C. Humans as major geological and geomorphological agents in the Anthropocene: The significance of artificial ground in Great Britain. Philos. Trans. R. Soc. A 2011, 369, 1056–1084. [Google Scholar] [CrossRef]
- Rzetala, M.; Jagus, A. New lake district in Europe: Origin and hydrochemical characteristics. Water Environ. J. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Kantor-Pietraga, I.; Krzysztofik, R.; Solarski, M. Planning Recreation around Water Bodies in Two Hard Coal Post-Mining Areas in Southern Poland. Sustainability 2023, 15, 10607. [Google Scholar] [CrossRef]
- Ciszewski, D.; Sobucki, M. River response to mining-induced subsidence. Catena 2022, 214, 106303. [Google Scholar] [CrossRef]
- Tripathi, N.; Singh, R.S. Underground Coal Mine Subsidence Impacts Forest Ecosystem; Central Institute of Mining and Fuel Research: Dhanbad, India, 2010. [Google Scholar]
- He, Y.; He, X.; Liu, Z.; Zhao, S.; Bao, L.; Li, Q.; Yan, L. Coal mine subsidence has limited impact on plant assemblages in an arid and semi-arid region of northwestern China. Écoscience 2017, 24, 91–103. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Ruan, M.; Guo, J.; Chai, T. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. Int. J. Environ. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef]
- Darmody, R.G.; Bauer, R.; Barkley, D.; Clarke, S.; Hamilton, D. Agricultural impacts of longwall mine subsidence: The experience in Illinois, USA and Queensland, Australia. Int. J. Coal. Sci. Technol. 2014, 1, 207–212. [Google Scholar] [CrossRef]
- Yang, D.D.; Qiu, H.J.; Ma, S.Y.; Liu, Z.J.; Du, C.; Zhu, Y.R.; Cao, M.M. Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. Catena 2022, 209, 105830. [Google Scholar] [CrossRef]
- Odpowiedź na Interpelację nr 32582 [Response to Interpellation no. 32582]. Available online: https://orka2.sejm.gov.pl/INT7.nsf/main/0D3CC9D9 (accessed on 20 September 2024).
Elevation Range [m a.s.l.] | 1883 | 1993 | ||
---|---|---|---|---|
Area [km2] | Share of Area [%] | Area [km2] | Share of Area [%] | |
225–235 | - | - | 1.2 | 11.3 |
235–245 | 3.7 | 34.9 | 4.2 | 39.7 |
245–255 | 1.7 | 16.1 | 2.4 | 22.6 |
255–265 | 2.4 | 22.7 | 1.1 | 10.4 |
265–275 | 0.7 | 6.6 | 0.7 | 6.6 |
275–285 | 0.8 | 7.5 | 0.6 | 5.7 |
285–295 | 0.6 | 5.6 | 0.1 | 0.9 |
295–305 | 0.4 | 3.8 | 0.2 | 1.9 |
305–315 | 0.3 | 2.8 | 0.1 | 0.9 |
Period | Average Depression of the Ground Surface [m] | Rate of Land Surface Subsidence [mm/Year] | Subsidence Volume [Million m3] |
---|---|---|---|
1883–1993 | 6.7 | 60 | 70.9 |
1883–2022 | 9.5 | 68 | 100.5 |
1993–2012 | 2.6 | 144 | 27.5 |
1993–2022 | 2.8 | 100 | 29.6 |
2012–2022 | 0.2 | 20 | 2.1 |
Elevation Range [m a.s.l.] | 2012 | 2022 | ||
---|---|---|---|---|
Area [km2] | Share of Area [%] | Area [km2] | Share of Area [%] | |
221–231 | 1.5 | 14.3 | 1.6 | 15.2 |
231–241 | 3.2 | 30.4 | 3.2 | 30.4 |
241–251 | 2.8 | 26.5 | 2.8 | 26.5 |
251–261 | 1.2 | 11.4 | 1.1 | 10.6 |
261–271 | 0.6 | 5.7 | 0.6 | 5.7 |
271–281 | 0.6 | 5.7 | 0.6 | 5.7 |
281–291 | 0.4 | 3.8 | 0.4 | 3.8 |
291–301 | 0.2 | 1.9 | 0.2 | 1.9 |
301–311 | 0.1 | 0.2 | 0.1 | 0.2 |
311–321 | 0.0 | 0.1 | - | - |
Linear Attributes [km] | Year 1883 | Year 1993 | Year 2022 |
---|---|---|---|
Roads | 49.5 | 44.9 | 58.8 |
Railway lines | - | 9.3 | 9.0 |
Watercourses | 8.5 | 27.4 | 25.4 |
Areal attributes [ha] | Year 1883 | Year 1993 | Year 2022 |
Fields, fallow lands, fallow wastelands | 596.2 | 165.0 | 137.3 |
Forests and trees | 198.1 | 311.0 | 418.5 |
Meadows, pastures, grasslands | 169.0 | 162.9 | 40.0 |
Built-up areas | 45.0 | 212.1 | 252.0 |
Road areas | 28.7 | 29.0 | 64.1 |
Water bodies | 4.6 | 18.3 | 6.0 |
Industrial areas and post-industrial areas | 15.3 | 115.8 | 100.1 |
Cemeteries | 0.3 | 3.0 | 3.0 |
Sports facilities | - | 5.7 | 5.7 |
Allotment gardens | - | 35.9 | 31.0 |
Railway areas | - | 11.6 | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machowski, R.; Solarski, M.; Rzetala, M.A.; Rzetala, M.; Hamdaoui, A. The Impact of Hard Coal Mining on the Long-Term Spatio-Temporal Evolution of Land Subsidence in the Urban Area (Bielszowice, Poland). Resources 2024, 13, 167. https://doi.org/10.3390/resources13120167
Machowski R, Solarski M, Rzetala MA, Rzetala M, Hamdaoui A. The Impact of Hard Coal Mining on the Long-Term Spatio-Temporal Evolution of Land Subsidence in the Urban Area (Bielszowice, Poland). Resources. 2024; 13(12):167. https://doi.org/10.3390/resources13120167
Chicago/Turabian StyleMachowski, Robert, Maksymilian Solarski, Martyna A. Rzetala, Mariusz Rzetala, and Abderrahman Hamdaoui. 2024. "The Impact of Hard Coal Mining on the Long-Term Spatio-Temporal Evolution of Land Subsidence in the Urban Area (Bielszowice, Poland)" Resources 13, no. 12: 167. https://doi.org/10.3390/resources13120167
APA StyleMachowski, R., Solarski, M., Rzetala, M. A., Rzetala, M., & Hamdaoui, A. (2024). The Impact of Hard Coal Mining on the Long-Term Spatio-Temporal Evolution of Land Subsidence in the Urban Area (Bielszowice, Poland). Resources, 13(12), 167. https://doi.org/10.3390/resources13120167