Multi-Decadal Nutrient Management and Trends in Two Catchments of Lake Okeechobee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Water Quality Analysis
2.2.1. Discharge
2.2.2. Nutrient Concentrations
2.3. Nutrient Sources and Treatment
3. Results
3.1. Discharge Analysis
3.2. Water Quality Trends
3.3. Nutrient Sources and Treatment
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masters, G.M.; Ela, W.P. Water Pollution. In Introduction to Environmental Engineering and Science; Pearson: London, UK, 2008; pp. 173–266. [Google Scholar]
- van Meter, K.J.; Basu, N.B.; Veenstra, J.J.; Burras, C.L. The Nitrogen Legacy: Emerging Evidence of Nitrogen Accumulation in Anthropogenic Landscapes. Environ. Res. Lett. 2016, 11, 035014. [Google Scholar] [CrossRef]
- Chen, D.; Shen, H.; Hu, M.; Wang, J.; Zhang, Y.; Dahlgren, R.A. Legacy Nutrient Dynamics at the Watershed Scale: Principles, Modeling, and Implications, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 149. [Google Scholar]
- Ator, S.W.; Blomquist, J.D.; Webber, J.S.; Chanat, J.G. Factors Driving Nutrient Trends in Streams of the Chesapeake Bay Watershed. J. Environ. Qual. 2020, 49, 812–834. [Google Scholar] [CrossRef]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B.; Van Cappellen, P. Two Centuries of Nitrogen Dynamics: Legacy Sources and Sinks in the Mississippi and Susquehanna River Basins. Glob. Biogeochem. Cycles 2017, 31, 2–23. [Google Scholar] [CrossRef]
- Shortle, J.S.; Mihelcic, J.R.; Zhang, Q.; Arabi, M. Nutrient Control in Water Bodies: A Systems Approach. J. Environ. Qual. 2020, 49, 517–533. [Google Scholar] [CrossRef]
- O’Higgins, T.G.; DeWitt, T.H.; Lago, M. Ecosystem-Based Management, Ecosystem Services and Aquatic Biodiversity; Springer Nature: London, UK, 2020; ISBN 9783030458423. [Google Scholar]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I. A Review on Effectiveness of Best Management Practices in Improving Hydrology and Water Quality: Needs and Opportunities. Sci. Total Environ. 2017, 601–602, 580–593. [Google Scholar] [CrossRef]
- Yoder, L.; Chowdhury, R.R.; Hauck, C. Watershed Restoration in the Florida Everglades: Agricultural Water Management and Long-Term Trends in Nutrient Outcomes in the Everglades Agricultural Area. Agric. Ecosyst. Environ. 2020, 302, 107070. [Google Scholar] [CrossRef]
- Osmond, D.; Meals, D.W.; Hoag, D.L.K.; Arabi, M. How to Build Better Agricultural Conservation Programs to Protect Water Quality: The NIFA-CEAP Experience; Soil and Water Conservation Society: Ankeny, IA, USA, 2012; ISBN 9780976943297. [Google Scholar]
- Aguilar, M.F.; Dymond, R.L. Evaluation of Stormwater Control Measure Performance Uncertainty. J. Environ. Eng. 2019, 145, 04019060. [Google Scholar] [CrossRef]
- Hoss, F.; Fischbach, J.; Molina-Perez, E. Effectiveness of Best Management Practices for Stormwater Treatment as a Function of Runoff Volume. J. Water Resour. Plan. Manag. 2016, 142, 05016009. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B.A. Evaluating the Effectiveness of Management Practices on Hydrology and Water Quality at Watershed Scale with a Rainfall-Runoff Model. Sci. Total Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef] [PubMed]
- National Resource Council. Urban Stormwater Management in the United States; National Academies Press: Washington, DC, USA, 2009; ISBN 0309125405. [Google Scholar]
- Kleinman, P.J.A.; Fanelli, R.M.; Hirsch, R.M.; Buda, A.R.; Easton, Z.M.; Wainger, L.A.; Brosch, C.; Lowenfish, M.; Collick, A.S.; Shirmohammadi, A.; et al. Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. J. Environ. Qual. 2019, 48, 1191–1203. [Google Scholar] [CrossRef]
- Lee, C.J.; Hirsch, R.M.; Schwarz, G.E.; Holtschlag, D.J.; Preston, S.D.; Crawford, C.G.; Vecchia, A.V. An Evaluation of Methods for Estimating Decadal Stream Loads. J. Hydrol. 2016, 542, 185–203. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Moyer, D.L.; Archfield, S.A. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 857–880. [Google Scholar] [CrossRef]
- Hirsch, R.M.; De Cicco, L.A. User Guide to Exploration and Graphics for RivEr Trends (EGRET) and DataRetrieval: R Packages for Hydrologic Data. In Hydrologic Analysis and Interpretation; US Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Oelsner, G.P.; Sprague, L.A.; Murphy, J.C.; Zuellig, R.E.; Johnson, H.M.; Ryberg, K.R.; Falcone, J.A.; Stets, E.G.; Vecchia, A.V.; Riskin, M.L.; et al. Water-Quality Trends in the Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results; U.S. Geological Survey Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2017; 136p. [Google Scholar] [CrossRef]
- Murphy, J.; Sprague, L. Water-Quality Trends in US Rivers: Exploring Effects from Streamflow Trends and Changes in Watershed Management. Sci. Total Environ. 2019, 656, 645–658. [Google Scholar] [CrossRef]
- Chanat, J.G.; Moyer, D.L.; Blomquist, J.D.; Hyer, K.E.; Langland, M.J. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results through Water Year 2012; US Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- Murphy, J.C. Changing Suspended Sediment in United States Rivers and Streams: Linking Sediment Trends to Changes in Land Use/Cover, Hydrology and Climate. Hydrol. Earth Syst. Sci. 2020, 24, 991–1010. [Google Scholar] [CrossRef]
- Canion, A.; Hoge, V.; Jobes, T.; Dobberfulh, D. Phosphorus and Nitrogen Export Associated with Biosolids Applications in Tributary Watersheds of the St. Johns River; St. Johns River Water Management District: Palatka, FL, USA, 2021. [Google Scholar]
- Engstrom, D.R.; Schottler, S.P.; Leavitt, P.R.; Havens, K.E. A Reevaluation of the Cultural Eutrophication of Lake Okeechobee Using Multiproxy Sediment Records. Ecol. Appl. 2006, 16, 1194–1206. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Progress toward Restoring the Everglades: The Eighth Biennial Review—2020; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2021; ISBN 9780309679787. [Google Scholar]
- Reddy, K.R.; Newman, S.; Osborne, T.Z.; White, J.R.; Fitz, H.C. Phosphorous Cycling in the Greater Everglades Ecosystem: Legacy Phosphorous Implications for Management and Restoration. Crit. Rev. Environ. Sci. Technol. 2011, 41, 149–186. [Google Scholar] [CrossRef]
- Lodge, T.E. Lake Okeechobee and the Everglades Headwaters. In The Everglades Handbook; CRC Press: Boca Raton, FL, USA, 2021; pp. 167–191. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Cattelino, J.; Wozniak, J.R.; Schwartz, K.; Noe, G.B.; Castaneda-Moya, E.; Koch, G.R. The Life of P: A Biogeochemical and Sociopolitical Challenge in the Everglades. In The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the South Florida Landscape; Boyer, J.N., Davis, S.E., Eds.; Oxford University Press: New York, NY, USA, 2019; pp. 99–128. [Google Scholar]
- Sklar, F.H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.L.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; et al. The Ecological–Societal Underpinnings of Everglades Restoration. Front. Ecol. Environ. 2005, 3, 161–169. [Google Scholar] [CrossRef]
- Flaig, E.G.; Reddy, K.R. Fate of Phosphorus in the Lake Okeechobee Watershed, Florida, USA: Overview and Recommendations. Ecol. Eng. 1995, 5, 127–142. [Google Scholar] [CrossRef]
- Yariett, L.L. History of the Florida Cattle Industry. Rangelands 1985, 7, 205–207. [Google Scholar]
- Boggess, C.F.; Flaig, E.G.; Fluck, R.C. Phosphorus Budget-Basin Relationships for Lake Okeechobee Tributary Basins. Ecol. Eng. 1995, 5, 143–162. [Google Scholar] [CrossRef]
- South Florida Water Management District (SFWMD). South Florida Environmental Report, Chapter 8B: Lake Okeechobee Watershed Protection Plan Annual Progress Report; SFWMD: West Palm Beach, FL, USA, 2023. [Google Scholar]
- Davis, F.E.; Marshall, M.L. Marshall Chemical and Biological Investigations of Lake Okeechobee January 1973–June 1974 Interim Report; Resources Planning Department, Central and Southern Florida Flood Control District: West Palm Beach, FL, USA, 1975. [Google Scholar]
- Federico, A. Investigations of the Relationship Between Land Use, Rainfall, and Runoff Quality in the Taylor Creek Watershed; Resources Planning Department, Central and Southern Florida Flood Control District: West Palm Beach, FL, USA, 1977. [Google Scholar]
- Hiscock, J.G.; Thourot, C.S.S.; Zhang, J. Phosphorus Budget—Land Use Relationships for the Northern Lake Okeechobee Watershed, Florida. Ecol. Eng. 2003, 21, 63–74. [Google Scholar] [CrossRef]
- Havens, K.E.; Eric, G.; Flaig, R. Thomas James, Sergio Lostal, and Dera Muszick. Results of a Program to Control Phosphorus Discharges from Dairy Operations in South-Central Florida, USA. Environ. Manag. 1996, 20, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, A.B.; Tremwel, T.K.; Campbell, K.L. Best Management Practices for Water Quality Improvement in the Lake Okeechobee Watershed. Ecol. Eng. 1995, 5, 341–356. [Google Scholar] [CrossRef]
- Swift, D.; VanArman, J.; Gulick, L.; Federico, T. Interim Surface Water Improvement and Management Swim Plan for Lake Okeechobee; South Florida Water Management District: West Palm Beach, FL, USA, 1989. [Google Scholar]
- Florida Adminstrative Code (F.A.C.) Rule 62-640. Available online: https://www.flrules.org/gateway/ChapterHome.asp?Chapter=62-640 (accessed on 11 October 2023).
- Florida Department of Environmental Protection (FDEP). Lake Okeechobee Basin Management Action Plan; Florida Department of Environmental Protection (FDEP): Tallahassee, FL, USA, 2020. [Google Scholar]
- FDACS. Available online: https://www.fdacs.gov/Agriculture-Industry/Water/Agricultural-Best-Management-Practices (accessed on 15 March 2022).
- Frydenborg, B.R.; Frydenborg, R.B. A Meta-Analytical Approach for Determining the Effectiveness of Agricultural Best Management Practices (BMPs) for Reducing Nutrient Pollution in Florida Phase 2: Cow/Calf Operations, Vegetable Crops, and Agronomic Crops; Fydenborg EcoLogic, LLC.: Tallahassee, FL, USA, 2016. Available online: https://ccmedia.fdacs.gov/content/download/76315/file/NC1_FinalReport.pdf (accessed on 3 February 2021).
- Florida Department of Agriculture and Consumer Services (FDACS). Best Management Practices for Florida Cow/Calf Operations; FDACS: Tallahassee, FL, USA, 2008. [Google Scholar]
- He, Z.; Hiscock, J.G.; Merlin, A.; Hornung, L.; Liu, Y.; Zhang, J. Phosphorus Budget and Land Use Relationships for the Lake Okeechobee Watershed, Florida. Ecol. Eng. 2014, 64, 325–336. [Google Scholar] [CrossRef]
- Khare, Y.P.; Paudel, R.; Wiederholt, R.; Abiy, A.Z.; Van Lent, T.; Davis, S.E.; Her, Y. Watershed Response to Legacy Phosphorus and Best Management Practices in an Impacted Agricultural Watershed in Florida, U.S.A. Land 2021, 10, 977. [Google Scholar] [CrossRef]
- Goldstein, A.L.; Berman, W. Phosphorus Management on Confinement Dairies in Southern Florida. Ecol. Eng. 1995, 5, 357–370. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Villapando, O.R. Controlling Runoff from Subtropical Pastures Has Differential Effects on Nitrogen and Phosphorus Loads. J. Environ. Qual. 2011, 40, 989–998. [Google Scholar] [CrossRef]
- Ritter, G.J.; Allen, L.H. Taylor Creek Headwaters Project Phase I Report; Water Quality; Resource Planning Department, South Florida Water Management District: West Palm Beach, FL, USA, 1982. [Google Scholar]
- Environmental Systems Research Institute, Inc. (ESRI). National Geographic. Scale Not Given. National Geographic Style Base. Available online: https://tiles.arcgis.com/tiles/P3ePLMYs2RVChkJx/arcgis/rest/services/NatGeoStyleBase/MapServer (accessed on 2 March 2023).
- ESRI. National Geographic. [Vector Tile Service]. Scale Not Given. “National Geographic Style”. Available online: https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer (accessed on 2 March 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Oelsner, G.P.; Stets, E.G. Recent Trends in Nutrient and Sediment Loading to Coastal Areas of the Conterminous U.S.: Insights and Global Context. Sci. Total Environ. 2018, 654, 1225–1240. [Google Scholar] [CrossRef]
- Choquette, A.F.; Hirsch, R.M.; Murphy, J.C.; Johnson, L.T.; Confesor, R.B. Tracking Changes in Nutrient Delivery to Western Lake Erie: Approaches to Compensate for Variability and Trends in Streamflow. J. Great Lakes Res. 2019, 45, 21–39. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Archfield, S.A.; De Cicco, L.A. A Bootstrap Method for Estimating Uncertainty of Water Quality Trends. Environ. Model. Softw. 2015, 73, 148–166. [Google Scholar] [CrossRef]
- South Florida Water Management District (SFWMD). DBHYDRO. Available online: https://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu (accessed on 11 October 2023).
- FDEP OCULUS. Available online: https://depedms.dep.state.fl.us/Oculus/servlet/search (accessed on 12 November 2023).
- FDEP Information (Nexus) Portual. Available online: https://prodenv.dep.state.fl.us/DepNexus/public/searchPortal (accessed on 12 November 2023).
- Zhang, J.; Burke, P.; Iricanin, N.; Hill, S.; Gray, S.; Budell, R. Long-Term Water Quality Trends in the Lake Okeechobee Watershed, Florida. Crit. Rev. Environ. Sci. Technol. 2011, 41, 548–575. [Google Scholar] [CrossRef]
- Khare, Y.P.; Naja, G.M.; Paudel, R.; Martinez, C.J. A Watershed Scale Assessment of Phosphorus Remediation Strategies for Achieving Water Quality Restoration Targets in the Western Everglades. Ecol. Eng. 2020, 143, 105663. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus Retention in Streams and Wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Reddy, K.R.; Flaig, E.G.; Graetz, D.A. Phosphorus Storage Capacity of Uplands, Wetlands and Streams of the Lake Okeechobee Watershed, Florida. Agric. Ecosyst. Environ. 1996, 59, 203–216. [Google Scholar] [CrossRef]
- Swain, H.M.; Bohlen, P.J.; Campbell, K.L.; Lollis, L.O.; Steinman, A.D. Integrated Ecological and Economic Analysis of Ranch Management Systems: An Example From South Central Florida. Rangel. Ecol. Manag. 2007, 60, 1–11. [Google Scholar] [CrossRef]
- Osmond, D.L.; Shober, A.L.; Sharpley, A.N.; Duncan, E.W.; Hoag, D.L.K. Increasing the Effectiveness and Adoption of Agricultural Phosphorus Management Strategies to Minimize Water Quality Impairment. J. Environ. Qual. 2019, 48, 1204–1217. [Google Scholar] [CrossRef] [PubMed]
BMP Types | BMP Description | BMP Examples |
---|---|---|
I | Non-structural, Low Cost | Soil Testing Slow-Release Fertilizer Timing Fertilizer Application |
II 1 | Structural, Moderate Cost | Fencing Culverts Sediment Traps Tailwater Recovery Systems Water-Control Structures |
III 1 | Structural, High Cost | Grade Stabilization Stormwater Retention/Detention |
Study Year | Major Agricultural Land Use Land Cover (Percentage of Basin) | BMP Implementation Stage | Runoff Concentration (mg/L) | |
---|---|---|---|---|
TN 2 | TP | |||
1977 [36] | Improved pasture (85%) Dairy (8.7%) | Before Taylor Creek Headwaters Program: No existing BMPs | TKN: 1.30–5.39 Nitrite: 0.007–0.03 Nitrate: 0.004–0.311 | 1.26–2.90 |
Improved pasture (80%) Citrus (6%) | TKN: 1.17–1.93 Nitrite: 0.004–0.033 Nitrate: 0.007–0.345 | 0.27–0.905 | ||
Improved pasture (79%) Dairy (21%) | TKN: 2.36–11.20 Nitrite: 0.009–1.56 Nitrate: 0.004–1.88 | 2.01–6.21 | ||
Improved pasture (86%) Crop (4%) | TKN: 1.33–2.75 Nitrite: 0.007–0.021 Nitrate: 0.004–0.380 | 0.238–0.957 | ||
1995 [48] | Dairy (100%) | Before Dairy Rule | Not Reported | 6.78 |
Dairy (100%) | After Dairy Rule | 2.70 | ||
Improved pasture (100%) | 0.66–0.74 | |||
2011 1 [49] | Improved pasture (100%) | Before BMP (Water-Control Structure) | 3.31 | 0.66 |
After BMP (Water-Control Structure) | 2.86 | 0.89 |
Land Use Land Cover | TP Loading (kg/ha/yr) | |
---|---|---|
2014 [46] | 2021 [47] | |
Abandoned Dairy | 8.82 | 4.45 |
Citrus | 0.86 | 2.21 |
Dairy | 3.40 | 11 |
Improved Pasture | 1.51 | 1.82 |
Low Density Residential | 0.34 | 0.63 |
Unimproved Pasture | 0.31 | 0.96 |
Basin | Land Use Land Cover | 1988 | 1995 | 1999 | 2005 | 2008 | 2017 | |
---|---|---|---|---|---|---|---|---|
Taylor Creek Headwaters | Agricultural | Improved Pasture | 65.9% | 57.2% | 62.9% | 60.0% | 63.0% | 55.9% |
Pasture | 14.6% | 3.4% | 9.5% | 9.4% | 7.0% | 6.1% | ||
Dairy | 0.8% | 9.9% | 6.3% | 6.3% | 6.3% | 21.1% | ||
Cattle Feeding Operation | - | - | 0.4% | 0.3% | 2.0% | 0.3% | ||
Citrus Groves | 2.9% | 3.6% | 4.3% | 4.2% | 4.2% | 4.1% | ||
Cropland | - | 4.3% | 4.4% | 7.0% | 4.8% | 1.0% | ||
Other Agricultural | 0.4% | 0.4% | 0.4% | 0.8% | 0.7% | 0.7% | ||
Urban | Low Density Residential | 1.8% | 0.0% | 0.3% | 0.9% | 1.2% | 1.4% | |
Other Urban | 0.4% | 2.7% | 1.3% | 1.2% | 1.2% | 1.2% | ||
Upland Forest | 3.8% | 7.0% | 1.0% | 0.8% | 0.6% | 0.6% | ||
Upland Nonforest | - | 2.9% | 0.6% | 0.7% | 1.0% | 0.4% | ||
Wetland | 9.4% | 6.3% | 7.6% | 7.8% | 7.4% | 6.7% | ||
Water | 0.1% | 2.2% | 0.5% | 0.4% | 0.4% | 0.2% | ||
Williamson Ditch | Agricultural | Improved Pasture | 65.9% | 48.8% | 60.1% | 49.7% | 54.5% | 52.3% |
Pasture | 7.9% | 13.9% | 14.4% | 16.0% | 17.7% | 17.7% | ||
Dairy | - | 0.2% | 0.1% | 0.1% | 0.1% | 0.6% | ||
Cattle Feeding Operation | - | - | - | - | - | - | ||
Citrus Groves | 3.8% | 4.2% | 4.2% | 4.2% | 4.2% | 4.2% | ||
Cropland | - | 2.8% | 3.8% | 10.3% | 3.5% | 3.1% | ||
Other Agricultural | 0.4% | 0.3% | 0.7% | 0.5% | 0.6% | 0.6% | ||
Urban | Low Density Residential | 5.0% | 0.0% | 4.1% | 5.2% | 5.4% | 4.1% | |
Other Urban | 1.8% | 8.1% | 2.0% | 3.2% | 3.1% | 4.4% | ||
Upland Forest | 5.6% | 15.3% | 1.7% | 1.3% | 1.6% | 1.6% | ||
Upland Nonforest | - | 1.0% | 0.8% | 0.6% | 1.4% | 1.4% | ||
Wetland | 9.7% | 4.8% | 7.7% | 8.4% | 7.6% | 9.7% | ||
Water | 0.1% | 0.7% | 0.4% | 0.5% | 0.5% | 0.5% |
Basin (USGS ID) | Data Utilized | Daily Mean Discharge Values | ||||
---|---|---|---|---|---|---|
Total | Missing | Zeros | Negative | Estimated | ||
Taylor Creek Headwaters (02274010) | 7 August 2003– 23 September 2023 | 7368 | 0 | 199 | 30 | 172 |
Williamson Ditch (02274490) | 4 September 2003– 23 September 2023 | 7355 | 0 | 349 | 0 | 229 |
Basin (SFWMD ID) | Parameter (mg/L) | Data Utilized | Data Values | ||
---|---|---|---|---|---|
Total | Censored Values 1 | Data Quality Flag 2 | |||
Taylor Creek Headwaters (TCNS 213) | Total Nitrogen | 10 July 2014– 21 September 2023 | 126 | 0 | 1 |
Total Kjeldahl Nitrogen | 20 August 2003– 17 March 2014 | 199 | 0 | 2 | |
Nitrate and Nitrite | 20 August 2003– 21 September 2023 | 199 | 20 | 2 | |
Total Phosphorus | 20 August 2003– 21 September 2023 | 326 | 0 | 3 | |
Williamson Ditch (TCNS 214) | Total Nitrogen | 25 June 2014– 6 September 2023 | 126 | 0 | 1 |
Total Kjeldahl Nitrogen | 4 September 2003– 17 February 2014 | 173 | 0 | 3 | |
Nitrate and Nitrite | 4 September 2003– 17 February 2014 | 171 | 50 | 0 | |
Total Phosphorus | 4 September 2003– 9 September 2023 | 300 | 0 | 1 |
Basin | Flux Bias Statistic | |
---|---|---|
TN | TP | |
Taylor Creek Headwaters | −0.005 | 0.002 |
Williamson Ditch | 0.004 | −0.002 |
Basin | Year of Enrollment | Cumulative Total | |
---|---|---|---|
Type I BMPs | Type II BMPs | ||
Taylor Creek Headwaters | 2000–2004 | 70 | 2 |
2005–2009 | 70 | 2 | |
2010–2014 | 286 | 11 | |
2015–2019 | 1032 | 22 | |
2020–2021 | 1493 | 26 | |
Williamson Ditch | 2010–2014 | 292 | 9 |
2015–2019 | 805 | 16 | |
2020–2021 | 1059 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, R.Z.; Ergas, S.J.; Nachabe, M. Multi-Decadal Nutrient Management and Trends in Two Catchments of Lake Okeechobee. Resources 2024, 13, 28. https://doi.org/10.3390/resources13020028
Cooper RZ, Ergas SJ, Nachabe M. Multi-Decadal Nutrient Management and Trends in Two Catchments of Lake Okeechobee. Resources. 2024; 13(2):28. https://doi.org/10.3390/resources13020028
Chicago/Turabian StyleCooper, Rachael Z., Sarina J. Ergas, and Mahmood Nachabe. 2024. "Multi-Decadal Nutrient Management and Trends in Two Catchments of Lake Okeechobee" Resources 13, no. 2: 28. https://doi.org/10.3390/resources13020028
APA StyleCooper, R. Z., Ergas, S. J., & Nachabe, M. (2024). Multi-Decadal Nutrient Management and Trends in Two Catchments of Lake Okeechobee. Resources, 13(2), 28. https://doi.org/10.3390/resources13020028